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Time series with values in H

{Xt}t≥1 is a time series with values in a real separable Hilbert
space H (Rd with d ≥ 1, `2, L2[0, 1], etc.).
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Simple model with periodic signal

{Xt}t≥1 is defined by

Xt = a cos(θt)ω + Zt

for t ≥ 1, where

(i) a ∈ R, θ ∈ [−π, π] and ω ∈ H are non-random;

(ii) {Zt}t≥1 are iid H-valued random elements with zero means.

The period of {Xt}t≥1 is equal to d = 2π/θ.
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Simulated example

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

1
2

Xt = 0.5cos((2π 7)t)ω +Wt, ω(τ) = 1 for τ ∈ [0, 1]

τ

X
t(τ
)

14

13

12

11

10

9

8

7

6

5

4

3

2

1
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Hypothesis

The hypothesis that we want to test is as follows

H0 : aω = 0 versus H1 : aω 6= 0.

To detect periodicities in the data, we propose to use the
periodogram.
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DFT and periodogram

Definition

The DFT of {Xt}1≤t≤n is defined by

Xn(ω) = n−1/2
n∑

t=1

Xte
−itω

with i =
√
−1 for ω ∈ [−π, π] and n ≥ 1.

Definition

The periodogram of {Xt}1≤t≤n is defined by

In(ω) = Xn(ω)⊗Xn(ω) = 〈·,Xn(ω)〉Xn(ω)

for ω ∈ [−π, π] and n ≥ 1.
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Maximum of periodogram

The test statistic is given by

Mn = max
1≤j≤q

|||In(ωj)|||2 = max
1≤j≤q

‖Xn(ωj)‖2

for n ≥ 1, where

(i) ωj = 2πj/n are the Fourier frequencies with 1 ≤ j ≤ q;

(ii) ||| · |||2 is the Hilbert-Schmidt norm;

(iii) q = b(n − 1)/2c.
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Simulated example (cont.)
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H = R

Theorem (Davis and Mikosch (1999))

Let us suppose that {Zt}t≥1 are iid random variables such that
E Z1 = 0, E |Z1|2 = 1 and E |Z1|s <∞ with s > 2. Then

max
1≤j≤q

In(θj)− log q
d−→ G as n→∞,

where q = b(n − 1)/2c and G is the standard Gumbel distribution
with the CDF given by F (x) = exp{− exp{−x}} for x ∈ R.
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Assumptions

Assumption 1

{Xt}t≥1 are iid zero mean random elements with values in H.

The eigenvectors of E[X1 ⊗ X1] are denoted by {vk}k≥1 and their
corresponding eigenvalues are denoted by {λk}k≥1.

Assumption 2

λk > λk+1 for each k ≥ 1.
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Finite dimensional approximation
Since {vk}k≥1 is an ONB of H, we have that

Xt =
∞∑
k=1

〈Xt , vk〉vk

for t ≥ 1.
We denote

X p
t =

p∑
k=1

〈Xt , vk〉vk , X p
n (ω) = n−1/2

n∑
t=1

X p
t e−itω

for t ≥ 1 and ω ∈ [−π, π]. We also denote

Mp
n = max

1≤j≤q
‖X p

n (ωj)‖2

for n ≥ 1.
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Asymptotic distribution when p is fixed

Theorem 1

If E ‖X1‖s <∞ with s > 2 and p ≥ 1 is fixed, then

a−1
n (Mp

n − bp
n)

d−→ G as n→∞,

where

(i) an = λ1;

(ii) bp
n = λ1log(qα1,p) with q = b(n − 1)/2c and

α1,p =

p∏
j=2

(1− λj/λ1)−1.
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Asymptotic distribution when p = pn →∞

Theorem 2

Suppose that E ‖X1‖4 <∞ and p = pn →∞ as n→∞. Then

a−1
n (Mpn

n − bpn
n )

d−→ G as n→∞

provided that

(i) {kλk}k≥1 is eventually monotonic;

(ii) p3
n/λ

1/2
n = o(n1/6/ log7/6 n) as n→∞;

(iii) pn = O(nγ0) as n→∞ with

γ0 < min{min
k≥2
{k−1(λ1/λk − 1)}, 1}.
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Asymptotic distribution of Mn

Theorem 3

Suppose that E ‖X1‖s <∞ with s ≥ 4 and that the assumptions
of Theorem 2 are satisfied. Then

a−1
n (Mn − bn)

d−→ G as n→∞

provided that there exists a positive sequence {`k}k≥1 such that∑
k≥1 `k = 1 and

(i)
∑

k>pn
`
−s/2
k E |〈X1, vk〉|s = o(ns/2−2) as n→∞;

(ii)
∑

k>pn
(λk/`k)s/2 = o(n−1) as n→∞.
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I Hidden periodicities in functional time series;

I Asymptotic distribution of the maximum of the periodogram;

I Generalisation of the result of Davis and Mikosch (1999);

I Asymptotic distribution when the dimension of the subspace is
fixed or grows to infinity;

I Results hold when the eigenvalues are decaying exponentially
or polynomially.
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