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Inequality and risk

The study of inequality 4

Social economists want to examine the inequality featured in
some income distribution (Y )

Figure: Prof. Anthony Atkinson

�3 Measuring inequality. We
may use the Lorenz curve, or
the Gini coefficient.

�7 Explaining inequality. We
want to link inequality to a set
of covariates

What do we have in mind ?

I To what extent can we attribute income inequality in
Belgium to disparities in education?



Lorenz regressions

Context

Inequality and risk

The study of risk 5

In finance: Y is now the return of some financial asset

I We are interested in the risk related to Y

I To what extent can we attribute the risk to the type of
asset (stock or bond) or macroeconomic conditions?

Figure: A finance worker
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The Lorenz and concentration curves

The Lorenz curve 6

Definition 1
The Lorenz curve (LC) of a continuous random variable Y with CDF FY
is defined as

LCY (p) :=
E[Y 1{FY (Y ) ≤ p}]

E[Y ]

I What share of income do the
p× 100%-poorest individuals own?

I Scalar measure: the Gini
coefficient

GiY := 2

∫ 1

0

[p− LCY (p)]dp =
2Cov[Y, FY (Y )]

E[Y ]
.
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The Lorenz and concentration curves

The concentration curve 7

Definition 2
The concentration curve (CC) of Y with respect to X, with CDF FX is
defined as

CCY,X(p) :=
E[Y 1{FX(X) ≤ p}]

E[Y ]

I What share of wage do the p× 100% least
educated own?

I Scalar measure: the concentration index

CiY,X := 2

∫ 1

0
[p− CCY,X(p)]dp =

2Cov[Y, FX(X)]

E[Y ]
.

I Inequality that you can reproduce if you
rank individuals in terms of education, not
in terms of wage.
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Existing tools

Shortcomings of the existing tools 8

What tools to determine the contributions of X on inequality of
Y ?

Decomposition ideas using the Lorenz curve. Assuming
Y = α1X1 + . . .+ αpXp.

I [Lerman and Yitzhaki, 1985] decomposed the Gini
coefficient of income Y in the contributions of its sources
Xk

I Problem: not a regression idea.

Regression ideas. For example, Y = α1X1 + . . .+ αpXp + ε

I Problem 1: the classical linear regression is not flexible.

I Problem 2: no link with inequality measurement.
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Goal

Goal 9

We want to develop a regression procedure . . .

1. which determines the contribution of covariates X on the
inequality of Y ;

2. and which allows more flexibility than the classical linear
regression.
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Maximization programme 11

Basic idea: we maximize the concentration index of Y by XT θ.

Lorenz regression - maximization programme

max
θ
Cov[Y, Fθ(X

T θ)] s.t. ||θ|| = 1, (1)

where Fθ is the CDF of XT θ.

1. Reproducing inequality: we find the vector of weights θ
which reproduces as much as possible the inequality of Y
(more later).

2. Regression procedure: more flexibility and robustness

because ranks are taken for XT θ
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A covariance inequality 12
A reminder on the concentration curve

Question: could we reproduce more than the Gini coefficient?

I Could it be that CiY,X > GiY ? No!

Lemma 3
Let Z ∈ R+ and Y ∈ R be two continuous random variables with respective
CDFs FZ and FY . Then, the following inequality holds

E[ZY ] ≤
∫ 1

0

F−1
Z (p)F−1

Y (p)dp.

Theorem 4
Let Y ∈ R be a continuous random variable with CDF FY and X ∈ R be a
continuous random variable with CDF FX . Then, the following inequality
holds

Cov[Y, FX(X)] ≤ Cov[Y, FY (Y )].
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Definitions 13

Assume XT θ is continuous. Recall that Fθ(.) is the CDF of XT θ.

Definition 5
The explained Lorenz curve of Y by XT θ is defined as

LCY,XT θ(p) := CCY,XT θ(p) =
E[Y 1{Fθ(XT θ) ≤ p}]

E[Y ]
,

and similarly, the explained Gini coefficient is

GiY,XT θ := CiY,XT θ =
2Cov[Y, Fθ(X

T θ)]

E[Y ]
.

Intuition: GiY,XT θ represents the inequality which we can reproduce if we

rank individuals in terms of XT θ instead of Y .

Note: GiY,XT θ ≤ GiY (theorem 4)
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Reproducing inequality

Maximization programme 14

Programme (1) chooses θ in order to maximize GiY,XT θ.

I We summarize the information contained in X in an index XT θ,
where ||θ|| = 1.

I We choose the weight vector θ so that XT θ reproduces as much as
possible the inequality of Y .

We can examine how much inequality we can reproduce by comparing
GiY,XT θ∗ to GiY .

Definition 6
We define the proportion of explained inequality (PEI) as

PEIY,XT θ∗ :=
GiY,XT θ∗

GiY
=
Cov[Y, Fθ∗(XT θ∗)]

Cov[Y, FY (Y )]
∈ [0, 1].
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Regression procedure

The model underneath 15

What is the econometric model lying underneath our
procedure?

I We need to find a model linking Y to XT θ and for which
maximization programme (1), once translated in the
sample, would bring a good estimator of θ.

I Answer: the single index model.
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Regression procedure

The single-index model 16

Definition 7

Following [Horowitz, 2009], we define the single-index model as

E[Y |X = x] = H(xT θ0)

where θ0 is normalized (here ||θ0|| = 1). Here, we furthermore
assume that H is increasing.

It is a semiparametric regression procedure.

1. The functional form of H is left unspecified (hence, more
flexible than parametric models).

2. The model displays a vector of parameters θ0 (hence, avoid
the curse of dimensionality of nonparametric regression).
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Regression procedure

Estimation of θ0 17

We focus first on estimation of θ0 (estimation of H will be
discussed later on).

Several methods:

I Semiparametric least-squares (Ichimura 1993).

I Maximum likelihood (Klein and Spady 1993, Ai 1997).

I Average derivative (Powell et al. 1989, Hristache et al.
2001).

Common drawback: one or more subjective smoothing
parameters to choose
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Regression procedure

The monotone rank estimator (MRE) 18

[Cavanagh and Sherman, 1998] introduced the monotone
rank estimator (MRE), obtained as

MRE - maximization programme

θ̂ = arg max
θ

n∑
i=1

YiRn(XT
i θ) s.t. ||θ|| = 1, (2)

where Rn(XT
i θ) denotes the rank of XT

i θ in the vector XT θ.

Link with the reproduction of inequality.

I The MRE is a simple translation of maximization
programme (1) in the sample!

I The MRE gives the vector of weights which reproduces as
much as possible the observed inequality in Y .
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Estimation of the regression curve (H) 19

Recall: we estimate θ0 with the MRE, and we obtain the estimated index
T = XT θ̂. In order to estimate H, we should incorporate the assumption
that it’s an increasing function.

Idea: We rewrite H so that H(.) = G(FT (.)). Hence,

P (H(T ) ≤ y) = P (G(FT (T )) ≤ y) = P (FT (T ) ≤ G−1(y))

= G−1(y)

Three steps.

1. Provide an initial estimator Ĥ1 for H (Nadaraya-Watson, local
polynomial, . . .)

2. Estimate P (Ĥ1(Ti) ≤ y). This gives an estimator of G−1(y).

3. Invert this estimator in order to obtain Ĝ. Finally, Ĥ(t) = Ĝ(F̂T (t)).

Two methods:

1. [Dette et al., 2006] use a Kernel estimator for P (Ĥ1(Ti) ≤ y).

2. [Chernozhukov et al., 2009] rather use the empirical CDF.
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An inequality-based goodness of fit 20

In linear regression the R2 measures the proportion of variability
(as measured by the variance) that we can reproduce with the model.

Goal: we want to build a similar measure for Lorenz regressions. The
PEI precisely does that in the population. We only need to translate
it in the sample.

Definition 8

The Lorenz-R2 (LR2) is defined as

LR2 :=
ĜiY,XT θ

ĜiY
=

1
n2

∑n
i=1 YiR

θ̂
n(XT

i θ̂)− Y
2

1
n2

∑n
i=1 YiR

Y
n (Yi)− Y

2

∈ [0, 1],

where RYn (.) corresponds to the rank in the Y vector while Rθ̂n(.) gives

the rank in the XT θ̂ vector.
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Some words about inference

Inference on θ0 21

Asymptotic distribution. [Cavanagh and Sherman, 1998] showed

that
√
n[θ̂ − θ0]

d→ N(0,Σ). However, estimation of Σ appears to be a
tedious task. Hence, we turn to bootstrapping procedures.

Bootstrap. [Subbotin, 2007] established the convergence of the

asymptotic distribution of θ∗ to that of θ̂. It also proves the
consistency of the bootstrap estimator of the variance, Σ∗. Two
options

I Hybrid bootstrap: we retain the asymptotic normality and only
bootstrap Σ̂.

I Basic bootstrap: we bootstrap the whole distribution of θ̂.

We can use both methods to build confidence intervals or tests.
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Performance of the estimation 23

We compare the estimation error of our procedure with the SLS
estimator of [Ichimura, 1993]. Formally, we look at

1. MISE of the index

MISE[XT θ] = E

[∫ (
XT θ̂ −XT θ

)2
dx

]
2. MISE of the regression curve

MISE[H(XT θ)] = E

[∫ (
Ĥ(XT θ̂)−H(XT θ)

)2
dx

]
Data generating process:

Yi = H
(
θ1X

1
i + . . .+ θcX

c
i + θc+1Z

1
i + . . .+ θc+dZ

d
i

)
+ εi,

where i = 1, . . . , n. H(t) = 3 + t+ t3, the Xi’s are c continuous
N(0, 1) and the Zi’s are d discrete Be(0.5).
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Sample size 24

Fix c = 3 and d = 1 and examine how the MISE evolves with n.

n=25 n=50 n=100 n=200 n=500

Index Ichimura 0.1940 0.1155 0.0563 0.0239 0.0061
Lorenz 0.0614 0.0393 0.0211 0.0110 0.0051

Curve Ichimura 1.0135 0.6320 0.3468 0.1849 0.0804
Lorenz 0.9236 0.6200 0.3469 0.1839 0.0910

I Index: Lorenz outperforms Ichimura, but slows down with
sample size.

I Curve: sensibly the same performances.
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Continuous covariates 25

Fix n = 100, and consider only continuous variables
(c = 2, c = 10 and c = 20).

c=2 c=10 c=20

Index Ichimura 0.009 0.041 0.047
Lorenz 0.009 0.008 0.009

Curve Ichimura 0.459 0.060 0.044
Lorenz 0.466 0.031 0.021

I Two covariates: sensibly the same performances.

I More covariates: Lorenz outperforms Ichimura,
especially for the index.



Lorenz regressions

Simulations

Questions?
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