26th Annual Meeting of the RSSB

Lorenz regressions

Alexandre Jacquemain Sup. Cedric Heuchenne

UCL (ISBA)

alexandre.jacque main@uclouvain.be

October 19, 2018

Overview

Context

Inequality and risk
The Lorenz and concentration curves
Existing tools
Goal

Methodology

Reproducing inequality Regression procedure Some words about inference

Simulations

Context

The study of inequality

Social economists want to examine the inequality featured in some income distribution (Y)

Figure: Prof. Anthony Atkinson

- ✓ Measuring inequality. We may use the Lorenz curve, or the Gini coefficient.
- **Z** Explaining inequality. We want to link inequality to a set of covariates

What do we have in mind?

▶ To what extent can we attribute income inequality in Belgium to disparities in education?

The study of risk

In finance: *Y* is now the return of some financial asset

- ightharpoonup We are interested in the risk related to Y
- ➤ To what extent can we attribute the risk to the type of asset (stock or bond) or macroeconomic conditions?

Figure: A finance worker

The Lorenz curve

6

Definition 1

The **Lorenz curve** (LC) of a continuous random variable Y with CDF F_Y is defined as

$$LC_Y(p) := \frac{E[Y1\{F_Y(Y) \le p\}]}{E[Y]}$$

- What share of income do the $p \times 100\%$ -poorest individuals own?
- Scalar measure: the Gini coefficient

$$Gi_Y := 2 \int_0^1 [p - LC_Y(p)] dp = \frac{2Cov[Y, F_Y(Y)]}{E[Y]}.$$

The Lorenz curve

6

Definition 1

The **Lorenz curve** (LC) of a continuous random variable Y with CDF F_Y is defined as

$$LC_Y(p) := \frac{E[Y\mathbb{1}\{F_Y(Y) \le p\}]}{E[Y]}$$

- What share of income do the $p \times 100\%$ -poorest individuals own?
- Scalar measure: the Gini coefficient

$$Gi_Y := 2 \int_0^1 [p - LC_Y(p)] dp = \frac{2Cov[Y, F_Y(Y)]}{E[Y]}.$$

Definition 2

The **concentration curve** (CC) of Y with respect to X, with CDF F_X is defined as

$$CC_{Y,X}(p) := \frac{E[Y\mathbb{1}\{F_X(X) \le p\}]}{E[Y]}$$

- What share of wage do the $p \times 100\%$ least educated own?
- Scalar measure: the concentration index

$$Ci_{Y,X} := 2 \int_0^1 [p - CC_{Y,X}(p)] dp = \frac{2Cov[Y, F_X(X)]}{E[Y]}.$$

Inequality that you can reproduce if you rank individuals in terms of education, not in terms of wage.

Definition 2

The **concentration curve** (CC) of Y with respect to X, with CDF F_X is defined as

$$CC_{Y,X}(p) := \frac{E[Y\mathbb{1}\{F_X(X) \le p\}]}{E[Y]}$$

- What share of wage do the $p \times 100\%$ least educated own?
- Scalar measure: the concentration index

$$Ci_{Y,X} := 2 \int_0^1 [p - CC_{Y,X}(p)] dp = \frac{2Cov[Y, F_X(X)]}{E[Y]}.$$

Inequality that you can reproduce if you rank individuals in terms of education, not in terms of wage.

Shortcomings of the existing tools

What tools to determine the contributions of X on inequality of Y?

Decomposition ideas using the Lorenz curve. Assuming $Y = \alpha_1 X_1 + \ldots + \alpha_p X_p$.

- ▶ [Lerman and Yitzhaki, 1985] decomposed the Gini coefficient of income Y in the contributions of its sources X_k
- ▶ <u>Problem</u>: not a regression idea.

Regression ideas. For example, $Y = \alpha_1 X_1 + \ldots + \alpha_p X_p + \epsilon$

- ▶ Problem 1: the classical linear regression is not flexible.
- ▶ Problem 2: no link with inequality measurement.

Goal

- (

We want to develop a **regression procedure** ...

- 1. which determines the contribution of covariates X on the inequality of Y;
- 2. and which allows more flexibility than the classical linear regression.

Methodology

Basic idea: we maximize the concentration index of Y by $X^T\theta$.

Lorenz regression - maximization programme

$$\max_{\theta} Cov[Y, F_{\theta}(X^T \theta)] \qquad \text{s.t. } ||\theta|| = 1, \tag{1}$$

where F_{θ} is the CDF of $X^T \theta$.

- 1. Reproducing inequality: we find the vector of weights θ which reproduces as much as possible the inequality of Y (more later).
- 2. Regression procedure: more flexibility and robustness because ranks are taken for $X^T\theta$

A covariance inequality

• A reminder on the concentration curv

Question: could we reproduce more than the Gini coefficient?

▶ Could it be that $Ci_{Y,X} > Gi_Y$? No!

Lemma 3

Let $Z \in \mathbb{R}^+$ and $Y \in \mathbb{R}$ be two continuous random variables with respective CDFs F_Z and F_Y . Then, the following inequality holds

$$E[ZY] \le \int_0^1 F_Z^{-1}(p) F_Y^{-1}(p) dp.$$

Theorem 4

Let $Y \in \mathbb{R}$ be a continuous random variable with CDF F_Y and $X \in \mathbb{R}$ be a continuous random variable with CDF F_X . Then, the following inequality holds

$$Cov[Y, F_X(X)] \leq Cov[Y, F_Y(Y)].$$

Definitions

Assume $X^T \theta$ is **continuous**. Recall that $F_{\theta}(.)$ is the CDF of $X^T \theta$.

Definition 5

The **explained Lorenz curve** of Y by $X^T\theta$ is defined as

$$LC_{Y,X^T\theta}(p) := CC_{Y,X^T\theta}(p) = \frac{E[Y\mathbb{1}\{F_{\theta}(X^T\theta) \le p\}]}{E[Y]},$$

and similarly, the explained Gini coefficient is

$$Gi_{Y,X^T\theta} := Ci_{Y,X^T\theta} = \frac{2Cov[Y,F_{\theta}(X^T\theta)]}{E[Y]}.$$

Intuition: $Gi_{Y,X^T\theta}$ represents the inequality which we can reproduce if we rank individuals in terms of $X^T\theta$ instead of Y.

Note: $Gi_{Y,X^T\theta} \leq Gi_Y$ (theorem 4)

Maximization programme

Programme (1) chooses θ in order to maximize $Gi_{YXT\theta}$.

- We summarize the information contained in X in an index $X^T \theta$. where $||\theta|| = 1$.
- We choose the weight vector θ so that $X^T\theta$ reproduces as much as possible the inequality of Y.

We can examine how much inequality we can reproduce by comparing $Gi_{YXT\theta*}$ to Gi_{Y} .

Definition 6

We define the **proportion of explained inequality** (PEI) as

$$PEI_{Y,X^T\theta^*} := \frac{Gi_{Y,X^T\theta^*}}{Gi_Y} = \frac{Cov[Y, F_{\theta^*}(X^T\theta^*)]}{Cov[Y, F_Y(Y)]} \in [0, 1].$$

The model underneath

What is the econometric model lying underneath our procedure?

- We need to find a model linking Y to $X^T\theta$ and for which maximization programme (1), once translated in the sample, would bring a good estimator of θ .
- ► Answer: the **single index model**.

Definition 7

Following [Horowitz, 2009], we define the single-index model as

$$E[Y|X=x] = H(x^T\theta_0)$$

where θ_0 is normalized (here $||\theta_0|| = 1$). Here, we furthermore assume that H is increasing.

It is a **semiparametric regression** procedure.

- 1. The functional form of H is left unspecified (hence, more flexible than parametric models).
- 2. The model displays a vector of parameters θ_0 (hence, avoid the curse of dimensionality of nonparametric regression).

16

Estimation of θ_0

We focus first on estimation of θ_0 (estimation of H will be discussed later on).

Several methods:

- ► Semiparametric least-squares (Ichimura 1993).
- ▶ Maximum likelihood (Klein and Spady 1993, Ai 1997).
- ▶ Average derivative (Powell et al. 1989, Hristache et al. 2001).

Common drawback: one or more subjective smoothing parameters to choose

The monotone rank estimator (MRE)

[Cavanagh and Sherman, 1998] introduced the **monotone** rank estimator (MRE), obtained as

MRE - maximization programme

$$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} Y_i R_n(X_i^T \theta) \qquad \text{s.t. } ||\theta|| = 1, \quad (2)$$

where $R_n(X_i^T\theta)$ denotes the rank of $X_i^T\theta$ in the vector $X^T\theta$.

Link with the reproduction of inequality.

- ► The MRE is a simple translation of maximization programme (1) in the sample!
- ► The MRE gives the vector of weights which reproduces as much as possible the observed inequality in Y.

Estimation of the regression curve (H)

Recall: we estimate θ_0 with the MRE, and we obtain the estimated index $T = X^T \hat{\theta}$. In order to estimate H, we should incorporate the assumption that it's an increasing function.

Idea: We rewrite H so that $H(.) = G(F_T(.))$. Hence,

$$P(H(T) \le y) = P(G(F_T(T)) \le y) = P(F_T(T) \le G^{-1}(y))$$

= $G^{-1}(y)$

Three steps.

- 1. Provide an initial estimator \hat{H}_1 for H (Nadaraya-Watson, local polynomial, . . .)
- 2. Estimate $P(\hat{H}_1(T_i) \leq y)$. This gives an estimator of $G^{-1}(y)$.
- 3. Invert this estimator in order to obtain \hat{G} . Finally, $\hat{H}(t) = \hat{G}(\hat{F}_T(t))$.

Two methods:

- 1. [Dette et al., 2006] use a Kernel estimator for $P(\hat{H}_1(T_i) \leq y)$.
- 2. [Chernozhukov et al., 2009] rather use the empirical CDF.

In linear regression the R^2 measures the proportion of variability (as measured by the variance) that we can reproduce with the model.

Goal: we want to build a similar measure for Lorenz regressions. The PEI precisely does that in the population. We only need to translate it in the sample.

Definition 8

The Lorenz- R^2 (LR^2) is defined as

$$LR^{2} := \frac{\hat{G}i_{Y,X^{T}\theta}}{\hat{G}i_{Y}} = \frac{\frac{1}{n^{2}} \sum_{i=1}^{n} Y_{i} R_{n}^{\hat{\theta}}(X_{i}^{T}\hat{\theta}) - \frac{\overline{Y}}{2}}{\frac{1}{n^{2}} \sum_{i=1}^{n} Y_{i} R_{n}^{Y}(Y_{i}) - \frac{\overline{Y}}{2}} \in [0, 1],$$

where $R_n^Y(.)$ corresponds to the rank in the Y vector while $R_n^{\hat{\theta}}(.)$ gives the rank in the $X^T\hat{\theta}$ vector.

Inference on θ_0

Asymptotic distribution. [Cavanagh and Sherman, 1998] showed that $\sqrt{n}[\hat{\theta} - \theta_0] \stackrel{d}{\to} N(0, \Sigma)$. However, estimation of Σ appears to be a tedious task. Hence, we turn to bootstrapping procedures.

Bootstrap. [Subbotin, 2007] established the convergence of the asymptotic distribution of θ^* to that of $\hat{\theta}$. It also proves the consistency of the bootstrap estimator of the variance, Σ^* . Two options

- ▶ Hybrid bootstrap: we retain the asymptotic normality and only bootstrap $\hat{\Sigma}$.
- ▶ Basic bootstrap: we bootstrap the whole distribution of $\hat{\theta}$.

We can use both methods to build confidence intervals or tests.

Simulations

Performance of the estimation

We compare the estimation error of our procedure with the SLS estimator of [Ichimura, 1993]. Formally, we look at

1. MISE of the index

$$MISE[X^T\theta] = E\left[\int \left(X^T\hat{\theta} - X^T\theta\right)^2 dx\right]$$

2. MISE of the regression curve

$$MISE[H(X^T\theta)] = E\left[\int \left(\hat{H}(X^T\hat{\theta}) - H(X^T\theta)\right)^2 dx\right]$$

Data generating process:

$$Y_i = H\left(\theta_1 X_i^1 + \ldots + \theta_c X_i^c + \theta_{c+1} Z_i^1 + \ldots + \theta_{c+d} Z_i^d\right) + \epsilon_i,$$

where i = 1, ..., n. $H(t) = 3 + t + t^3$, the X_i 's are c continuous N(0,1) and the Z_i 's are d discrete Be(0.5).

Sample size

Fix c = 3 and d = 1 and examine how the MISE evolves with n.

		n=25	n=50	n=100	n=200	n=500
Index	Ichimura					
	Lorenz	0.0614	0.0393	0.0211	0.0110	0.0051
Curve	Ichimura					
	Lorenz	0.9236	0.6200	0.3469	0.1839	0.0910

- ▶ Index: Lorenz outperforms Ichimura, but slows down with sample size.
- ▶ Curve: sensibly the same performances.

Continuous covariates

Fix n = 100, and consider only continuous variables (c = 2, c = 10 and c = 20).

		c=2	c=10	c=20
Index	Ichimura	0.009	0.041	0.047
	Lorenz	0.009	0.008	0.009
Curve	Ichimura	0.459	0.060	0.044
	Lorenz	0.466	0.031	0.021

- ▶ Two covariates: sensibly the same performances.
- ▶ More covariates: Lorenz outperforms Ichimura, especially for the index.

Questions?

Christopher Cavanagh and Robert P. Sherman (1998)

Rank Estimators for Monotonic Index Models

Journal of Econometrics, 84(2):351-381

Victor Chernozhukov, Ivan Fernandez-Val and Alfred Galichon (2009)

Improving point and interval estimators of monotone functions by rearrangement

Biometrika, 96(3):559-575

Holger Dette, Natalie Neumeyer and Kay F. Pilz (2006)

A Simple Nonparametric Estimator of a Strictly Monotone Regression Function

Bernoulli, 12(3):469-490

Joel L. Horowitz (2009)

Semiparametric and Nonparametric Methods in Econometrics

Springer Series in Statistics.

References II

Hidehiko Ichimura (1993)

Semiparametric least squares (SLS- and weighted SLS estimation of single-index models $\,$

Journal of Econometrics, 58(1):71-120.

Robert L. Lerman and Shlomo Yitzhaki (1985)

Income Inequality Effects by Income Source: A New Approach and Applications to the United States

The Review of Economics and Statistics, 67(1):151-156

Viktor Subbotin (2007)

Asymptotic and Bootstrap Properties of Rank Regressions

Ph.D. dissertation, Department of Economics, Northwestern University, Evanston, IL