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On the real line, we might model the continuous distribution 
of X with, say, a four-parameter family of distributions with 

densities of the form f((x-μ)/σ; α,κ)/σ
where μ is location, σ is scale and α, κ are (density) shape 
parameters.

Typically, μ in particular, and maybe σ (maybe even the 
others) will depend on covariates.



The distributionologist’s general approach 
to survival modelling

On the time line, we might model the continuous distribution 
of T with, say, a four-parameter family of distributions with 

hazards of the form β h(y/σ; α,κ)/σ
where β is vertical scale, σ is (horizontal) scale and α, κ are 
(hazard) shape parameters.

Typically, β and/or σ will depend on covariates (and 
maybe also the others) .

proportional hazards
accelerated failure time



EDEN HAZARD

EDEN HAZARD scoring the second goal for 
BELGIUM as they beat ENGLAND 2-0 in the 3rd

and 4th place play-off at the 2018 World Cup

HAL ROBSON-KANU scoring the second goal for 
WALES as they beat BELGIUM 3-1 in a quarter-final 

at the 2016 European Championships



desired robson-kanu function behaviour
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h(y) ≈ yλ-1 as y à ∞ 

α < 1 α = 1 α > 1
λ < 1 decreasing decreasing up-then-down
λ = 1 decreasing constant increasing
λ > 1 bathtub increasing increasing

Hoped-for shapes of h
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h(y) ≈ yα-1 as y à 0 

desired hazard function behaviour
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The power generalised Weibull (PGW) distribution 

h(y) ≈ yα-1 as y à 0 
h(y) ≈ yλ-1 as y à ∞ 

α < 1 α = 1 α > 1
λ < 1 decreasing decreasing up-then-down
λ = 1 decreasing constant increasing
λ > 1 bathtub increasing increasing

Shapes of h for PGW distribution
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The APGW distribution (A for Adapted) 

Horizontally and  
vertically rescale to:

PGW cumulative hazard:

κ distribution more distributions

0 log-logistic 
(with vscale parameter) 

Burr Type XII

1 Weibull α = 1:   exponential

2 “powered linear hazard” α = 1:   linear hazard

∞ Weibull extension α = 1:   Gompertz

Reparametrise: ! = #/%
& ' = (1 + '+) ,−1

& ' = ! + 1
! 1 + '+

! + 1
, − 1



κ distribution more distributions

0 log-logistic (with vscale parameter) 
Burr Type XII

⁞ PGWs ⁞      ⁞      ⁞      ⁞

1 Weibull α = 1:   exponential

⁞ PGWs ⁞      ⁞      ⁞      ⁞

∞ Weibull 
extension α = 1:   Gompertz

decreasing/up-then-down

decreasing/increasing

increasing/bathtub

dec/inc/up-then-down

dec/inc/bathtub



In the lung cancer data application in our     
five-times-rejected-without-refereeing paper 
Burke, Jones & Noufaily (2018), our best 
models comprise:

• one scale parameter (PH β or AFT σ) and 
one shape parameter (α) depending on the 
covariate;

• APGW conditionals with κ averaging 
around 0.4, indicating hazard/tail 
behaviour between Weibull and log-logistic 
[decreasing/increasing/up-then-down 
hazards].



The (A)PGW distributions can also be “stepped 
through” by so-called frailty mixing.

• let PGW(β, α, κ) be the distribution with survival 
function exp[ β { 1-(1+yα)κ} ], 

• and TS(ω, ζ) be Tweedie/Hougaard’s tempered 
stable or power variance distribution which has 
Laplace transform exp[ ζ {1-(1+s)ω} / ω], 0 < ω < 1.

Let T|B=b ~ PGW(b, α, κ) and B ~ TS(ω, ωλ).
Then T ~ PGW(λ, α, ωκ).

For example (case ω = ½): let T|B=b ~ PGW(b, α, κ) 
and B ~ IG(½, ½); then T ~ PGW(λ, α, ½κ).



Dear M. C. Jones,
Greetings and good day.

I represent Editorial Office of Whioce Publishing Pte. Ltd. from Singapore. We 
have come across your recent article, "A bivariate" published in Statistical 

Methods and Applications. We feel that the topic of this article is very 
interesting. Therefore, we are delighted to invite you to join the Editorial 

Board of our journal, entitled International Journal of Mathematical Physics 
We also hope that you can submit your future work in our journal. Please 

reply to this email if you are interested in joining the Editorial Board.
I look forward to hearing your positive response. Thank you for your kind 

consideration.

Best regards,
MF Sim

Editorial Office
International Journal of Mathematical Physics



The frailty property can be taken advantage of to 
produce a “natural” bi-(multi-)variate  model with PGW 
marginals via the shared frailty approach:

Bivariate: T1|B=b ~ PGW(b, α1, κ1), T2|B=b ~ PGW(b, α2, κ2),

and B ~ TS(ω, ωλ)

Then, 
"($% ≥ '%,$( ≥ '() = exp ) 1 − (1 + '%-.)0.+(1 + '(-1)01−1

2

Univariate (from a previous slide): T|B=b ~ PGW(b, α, κ) 
and B ~ TS(ω, ωλ)



Writing τi = ωκi , i = 1,2, marginally we have

T1 ~ PGW(λ, α1, τ1), T2 ~ PGW(λ, α2, τ2)

joined by the BB9 or power variance function (PVF) copula

• ω = 1: independence

• ω → 0: marginals equal

• λ → ∞: independence

• λ → 0: Gumbel copula

Kendall’s tau

C($, &) = exp λ − (λ − log $)-//+(λ − log &)-//−1-/2 2



And he’s right! The above gives us PGW marginals when 
we’d prefer to have APGW marginals.

The problem is that in the APGW case we need the frailty 
distribution to depend on κ … which is not the same in 
both margins in general. 



So we define the marginals to be

T1 ~ APGW(λ, α1, τ1), T2 ~ APGW(λ, α2, τ2)

and join them by the BB9/PVF copula

C(#, %) = exp λ − (λ − log #),/.+(λ − log %),/.−0,/1 1

in the usual way by marginal transformation

The result is slightly messier but still tractable with 
essentially the same properties (exactly the same
properties where they depend solely on the copula)



In the retinopathy application in our once-

rejected-without-refereeing paper Jones, 

Noufaily & Burke (2018), our best models 

comprise:

• separate scale parameters (AFT σi(x)) 

depending on the covariates (including 

treatment) and common shape parameters 

(both α(x) and τ);

• τ estimated to be 0.15, CI (-0.26, 0.78): log-

logistic, perhaps, but not Weibull;

• dependence parameters are such that 

Kendall’s tau is about 0.2 (down from 0.3 

when inappropriate Weibull marginals are 

used)



Reminder: the PGW distribution has cumulative hazard 
function [c.h.f.] (1+yα)κ – 1. 

This is of the form H{κH-1(yα)} = Hκ(yα), say, where 
H and H-1 are themselves c.h.f.s. In fact,

H(y) = ey -1 H-1(y) = log(1+y) 
(Gompertz) (log-logistic)

I’m currently exploring this general set-up with 
Karim Anaya-Izquierdo & Alice Davis (Bath, UK)



Swap the choice of H and H-1: consider Hκ(y) = H{κH-1(y)} with
H(y) = log(1+y) H-1(y) = ey -1
(log-logistic) (Gompertz) 

This gives the distribution with c.h.f. log(1 – κ + κey) …

… which is nothing other than the proportional odds (PO) 
model, which has

!κ(#)
%&!κ(#)

= %κ
'()

%&'()

(This distribution is also known as a Marshall-Olkin (MO) distribution)



The (A)PO/MO distribution can also be 

“stepped through” by frailty mixing:

• let PO(β, α, κ) be the distribution with survival 

function  (1 − $ + $&'()*+,
• and NB(ω, ζ) be the distribution of ζ/ω + 

NegativeBinomial (ζ/ω, 1/ω) which has Laplace 

transform (1 − - + -&.)*//1, ω > 1.

Let T|B=b ~ PO(b, α, κ) and B ~ NB(ω, ωλ).

Then T ~ PO(λ, α, ωκ).



Bivariate: T1|B=b ~ PO(b, α1, κ1), T2|B=b ~ PO(b, α2, κ2),

and B ~ NB(ω, ωλ)

Writing τi = ωκi , i = 1,2, marginally we have

T1 ~ PO(λ, α1, τ1), T2 ~ PO(λ, α2, τ2)

joined by the BB10 copula

" #, % = #%

1 − 1 − 1
) 1 − #*/, 1 − %*/,

,



In summary:
• I have looked at a general parametric framework for the modelling 

of survival distributions with cumulative hazard functions of the 
form ! "($/&; (, *), which have two scale-type parameters 
and two shape parameters;

• I have recommended a particular choice of ", that of the PGW 
distribution with " $; (, * = 1 + $/ 0 − 1;

• I have noted that one often needs one scale-type parameter and 
one shape parameter to depend on covariates;

• I have looked at attractive bivariate extension through shared frailty;
• and briefly suggested a parallel development for proportional odds 

models.

A natural extension would be to allow non-parametric 
dependence of parameter(s) on covariates. 
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