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Climate event attribution

Environmental extreme events:
increase in frequency and magnitude
in view of climate change.

Climate scientists want to measure the
impact of humans on changes in the
earth’s climate system
→ event attribution.

Use climate models to compare
probabilities of an extreme event with
and without anthropogenic forcing.
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By how much have human activities increased the risk of
occurrence of an extreme event?

Compare probability of an extreme event in the factual world (p1) and
in a counterfactual world (p0).

I Counterfactual world: without anthropogenic forcing, i.e., without
human influence.

I Extreme event: a random variable of interest (rainfall, temperature, ...)
exceeds some high threshold.

The Fraction of Attributable Risk (FAR) (Stott et al., 2004) is

FAR =
p1 − p0

p1
= 1− p0

p1
.

Many attribution studies are based on the normal distribution (not
heavy-tailed), or use nonparametric estimation (no extrapolation
possible), or are computationally heavy.

We use multivariate peaks-over-thresholds modelling (K.,
Rootzén, Segers, and Wadsworth, 2018) to characterize p0 and p1.
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Probabilities of causation of extreme events
Let C denote a cause (human activities) and E an event (a climatic
index exceeding a high threshold).
Three distinct forms of causation can be of interest (Pearl, 2000)

PN Probability of necessary causation: C is required for E
to occur but other factors may be required as well.

PS Probability of sufficient causation: C always triggers E ,
but E might occur without C .

PNS Probability of necessary and sufficient causation.
Under certain conditions (Hannart et al., 2016), these probabilities
can be calculated by

PN = 1− p0
p1
, PS = 1− 1− p1

1− p0
, PNS = p1 − p0.

The FAR coincides with the probability that human activities are
necessary for the event to occur.
When this threshold is high, the event is rare in the factual world (p1
small) and nearly impossible in the counterfactual worls (p0 ≈ 0).
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Univariate peaks over thresholds modelling

The distribution function H of a generalized Pareto distribution is

H(x ;σ, γ) = 1−
(

1 +
γx

σ

)−1/γ

+
,

where σ > 0 and γ ∈ R are the scale and shape parameters.

If Y is a random variable and u a sufficiently high threshold,

Y − u | Y > u
d
≈ X ,

where X ∼ GPD(σ, γ) (Pickands-Balkema-de Haan theorem).

The parameter γ characterizes the heaviness of the tail and the
support of the distribution.

The GPD can be used to model the tail of Y , since for y > u,

P[Y > y ] ≈ P[Y > u]H(y − u;σ, γ).
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Univariate vs multivariate peaks-over-thresholds

Univariate modelling strategy:

Fix some high threshold u.

Fit a GPD to the conditional
threshold excesses
Y − u | Y > u.
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Multivariate modelling strategy:

Fix some high threshold u.

Fit a multivariate GPD to the
conditional threshold excesses
Y − u | Y � u.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●
● ●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●●

●

●

●

● ●
●

●

●

●
●

●

● ●

●

●
●

●
●

●

●● ●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●● ●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●● ●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●

● ●

●

● ●

●

●

● ●

●● ●●

●

●

●
●●

●

●
● ●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

Anna Kiriliouk Climate event attribution using peaks-over-thresholds modelling 8 / 21



Univariate vs multivariate peaks-over-thresholds

Univariate modelling strategy:

Fix some high threshold u.

Fit a GPD to the conditional
threshold excesses
Y − u | Y > u.
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Multivariate modelling strategy:

Fix some high threshold u.

Fit a multivariate GPD to the
conditional threshold excesses
Y − u | Y � u.
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Characterizing a multivariate GPD

Let Y be a d-dimensional random vector and u ∈ Rd a threshold.

If X ≈ Y − u | Y � u, then X follows approximately a multivariate
GPD (Rootzén and Tajvidi, 2006).

The distribution function H of a multivariate GPD vector X belongs
to an infinite-dimensional parametric family: a model construction
tool has been proposed in Rootzén et al. (2018).

The margins of a multivariate GPD are generally not GPDs, but the
conditional margins are GPDs, i.e.,

P[Xj ≤ x | Xj > 0] = H(x ;σj , γj), j ∈ {1, . . . , d}.

Suppose that γ := γ1 = . . . = γd , i.e., the shape parameters of the
conditional margins are equal. For weights w = (w1, . . . ,wd) > 0,

wTX | wTX > 0 ∼ GPD
(
wTσ, γ

)
.

Anna Kiriliouk Climate event attribution using peaks-over-thresholds modelling 9 / 21



Characterizing a multivariate GPD

Let Y be a d-dimensional random vector and u ∈ Rd a threshold.

If X ≈ Y − u | Y � u, then X follows approximately a multivariate
GPD (Rootzén and Tajvidi, 2006).

The distribution function H of a multivariate GPD vector X belongs
to an infinite-dimensional parametric family: a model construction
tool has been proposed in Rootzén et al. (2018).

The margins of a multivariate GPD are generally not GPDs, but the
conditional margins are GPDs, i.e.,

P[Xj ≤ x | Xj > 0] = H(x ;σj , γj), j ∈ {1, . . . , d}.

Suppose that γ := γ1 = . . . = γd , i.e., the shape parameters of the
conditional margins are equal. For weights w = (w1, . . . ,wd) > 0,

wTX | wTX > 0 ∼ GPD
(
wTσ, γ

)
.

Anna Kiriliouk Climate event attribution using peaks-over-thresholds modelling 9 / 21



Characterizing a multivariate GPD

Let Y be a d-dimensional random vector and u ∈ Rd a threshold.

If X ≈ Y − u | Y � u, then X follows approximately a multivariate
GPD (Rootzén and Tajvidi, 2006).

The distribution function H of a multivariate GPD vector X belongs
to an infinite-dimensional parametric family: a model construction
tool has been proposed in Rootzén et al. (2018).

The margins of a multivariate GPD are generally not GPDs, but the
conditional margins are GPDs, i.e.,

P[Xj ≤ x | Xj > 0] = H(x ;σj , γj), j ∈ {1, . . . , d}.

Suppose that γ := γ1 = . . . = γd , i.e., the shape parameters of the
conditional margins are equal. For weights w = (w1, . . . ,wd) > 0,

wTX | wTX > 0 ∼ GPD
(
wTσ, γ

)
.

Anna Kiriliouk Climate event attribution using peaks-over-thresholds modelling 9 / 21



Outline

1 Introduction

2 Peaks-over-threshold modelling

3 Modelling causation probabilities

4 Application: European precipitation

Anna Kiriliouk Climate event attribution using peaks-over-thresholds modelling 10 / 21



Modelling causation probabilities: univariate case

Let Y (0), Y (1) denote the climate model output in the counterfactual
and factual world respectively.

Assume Y (i) − u(i) | Y (i) > u(i) ≈ X (i) ∼ GPD(σ(i), γ(i)) for i = 0, 1.

Set

FAR(v) = PN(v) = 1− p0(v)

p1(v)
,

where pi (v) = P[Y (i) > v ].

For v > u(i),

pi (v) ≈ P
[
Y (i) > u(i)

]
H
(
v − u(i);σ(i), γ(i)

)
.

The probability P[Y (i) > u(i)] can be estimated by the empirical
excess probability of u(i).

Estimating p0 and p1 for high values of v then amounts to estimating
the parameters of a univariate GPD.
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The PN, PS and PNS for different GPD parameters
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Modelling causation probabilities: multivariate case

Let Y (0), Y (1) ∈ Rd be random vectors of climate model output in
the counterfactual and factual world respectively.

Assume Y (i) − u(i) | Y (i) � u(i) ≈ X (i) for some high threshold u(i),
where X (i) is a multivariate GPD vector.

Set

PN(v ; w) = FAR(v ; w) = 1− p0(v ; w)

p1(v ; w)
,

for weights w = (w1, . . . ,wd)T > 0 with
∑d

j=1 wj = 1, and

pi (v) = P
[
wTY (i) > v

]
.

Recall the sum-stability property,

P[wTX (i) > v ] = P[wTX (i) > 0]H(v ; wTσ(i), γ(i)).
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p1(v ; w)
,

for weights w = (w1, . . . ,wd)T > 0 with
∑d

j=1 wj = 1, and

pi (v) = P
[
wTY (i) > v

]
.

Recall the sum-stability property,

P[wTX (i) > v ] = P[wTX (i) > 0]H(v ; wTσ(i), γ(i)).
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Modelling causation probabilities: multivariate case

The sum-stability property is only valid when γ(i) := γ
(i)
1 = . . . = γ

(i)
d

for i ∈ {0, 1}.
Combining Y (i) − u(i) | Y (i) � u(i) ≈ X (i) and sum-stability, we find

pi (v) ≈ P
[
wTY (i) > wTu(i)

]
H
(
v −wTu(i); wTσ(i), γ(i)

)
for v > wTu(i).

The first term on the right-hand side can be estimated
non-parametrically.

The parameters σj , γ can be estimated by fitting GPDs to the
conditional marginal threshold exceedances.
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The PN, PS and PNS for different scenarios

Examples of causation probabilities in d = 2 with w = (1/2, 1/2)T and
γ = γ(0) = γ(1), where, from left to right,

1 The factual world exhibits increased dependence and increased
marginal tail heaviness.

2 The factual world shows decreased dependence and increased
marginal tail heaviness.

3 The factual world shows increased dependence and decreased
marginal tail heaviness.
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European precipitation: shape parameters of GPD fit

Weekly maximum precipitation amounts (mm/day) between 1850 and
2005 on a grid of d = 268 points in central Europe.
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European precipitation: clusters

Partitioning around medoids (PAM) algorithm (Kaufman and Rousseeuw,
1990) based on madogram distance.
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European precipitation: probabilities of necessary causation

Fraction of Attributable Risk (or PN) per cluster, evaluated at a threshold
v corresponding to a hundred-year return level of wTY (1).
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Discussion

For v > wTu, we can also use the approximation

P[wTY > v ] ≈ P[Y � u]P
[
wTX > 0

]
H
(
v −wTu; wTσ, γ

)
.

For certain parametric models on the multivariate GPD vector X and
for certain γ, the probability P

[
wTX > 0

]
can be calculated

analytically.

To enhance the FAR, we look for weights w1, . . . ,wd that are
optimal, i.e.,

wopt = arg max
w :

∑
j wj=1

FAR(v ; w).

→ analytic expression for wopt only available in d = 2 for special
cases.
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