# Community based grouping for undirected graphical models

# Eugen Pircalabelu

Institute of Statistics, Biostatistics and Actuarial Sciences - UCLouvain



Joint work with **Gerda Claeskens** 

26th Annual Meeting of the Royal Statistical Society of Belgium Ovifat, 17-19 October, 2018

# Motivation: general fMRI setup







# Motivation: specific fMRI design



# Graph theoretical framework

- G = (E, V)• To each rv  $Y_1 \dots Y_p$  a node in  $V = \{1 \dots p\}$  is associated







3/13 4/13

### Graph theoretical framework

- G = (E, V)
- To each rv  $Y_1 \dots Y_p$  a node in  $V = \{1 \dots p\}$  is associated.

 $(a,b) \cup (b,a) \in E$  a-b a neighbor of b



### Graph theoretical framework

- G = (E, V)
- To each rv  $Y_1 \dots Y_p$  a node in  $V = \{1 \dots p\}$  is associated.

 $(a,b) \cup (b,a) \in E$  a-b a neighbor of b



Markov property:

$$a \perp c \mid V \setminus \{a,c\}$$
 iff  $(a,c) \cup (c,a) \notin E$  (e.g.  $a \perp c \mid b$ )

- If  $\mathbf{Y} \sim N(\mathbf{0}, \mathbf{\Theta}^{-1})$  then  $(a, c) \cup (c, a) \not\in E$  iff  $\mathbf{\Theta}_{a, c} = 0$
- (Unknown) Structure of  $G \equiv \text{Non-zero entries of } \Theta$
- Enforce sparsity on  $\Theta$  (by shrinking 'small' coeff. to 0) crucial when  $p\gg n$

### Network theoretical framework

- Network data: represented by a graph with n nodes via Adjacency matrix
  - $\mathbf{A}_{n \times n}$ , with  $A_{a,b} = \begin{cases} 1 & \text{if there is an edge between nodes } a \text{ and } b \\ 0 & \text{otherwise} \end{cases}$
- For each node a let  $\boldsymbol{Z}_a \in \{0,1\}^K$  be a (unobserved) labeling vector
- Let  $\boldsymbol{B}_{K\times K}$ : specify prob. of edges within/between the communities
- The rv.  $A_{a,b}$  iid Bernoulli with  $E(A_{a,b}|Z_a,Z_b) = Z_a^TBZ_b$ Membership matrix:  $Z_{n\times K} = [Z_1,Z_2,\ldots,Z_n]^T$  then  $E(A|Z) = ZBZ^T$



Olhede, S. C. and Wolfe, P. J. (2014). Network histograms and universality of blockmodel approximation. PNAS, 11(41), 14722-14727.

#### Network theoretical framework

5/13

- Network data: represented by a graph with n nodes via Adjacency matrix
  - $m{A}_{n \times n}, \ ext{with} \ A_{a,b} = egin{cases} 1 & ext{if there is an edge between nodes $a$ and $b$} \\ 0 & ext{otherwise} \end{cases}$
- For each node a let  $\boldsymbol{Z}_a \in \{0,1\}^K$  be a (unobserved) labeling vector
- Let  $B_{K \times K}$ : specify prob. of edges within/between the communities
- The rv.  $A_{a,b}$  iid Bernoulli with  $E(A_{a,b}|Z_a,Z_b) = Z_a^TBZ_b$ Membership matrix:  $Z_{n\times K} = [Z_1,Z_2,\ldots,Z_n]^T$  then  $E(A|Z) = ZBZ^T$



Olhede, S. C. and Wolfe, P. J. (2014). Network histograms and universality of blockmodel approximation. PNAS, 11(41), 14722-14727.

### Community-based group graphical lasso

#### What:

- an 'all-at-once' procedure that bridges PGMs and networks
- joint estimation of (i) edges and (ii) communities of similar nodes

#### Why:

- functional connectivity within the brain
- evaluate homogeneity/similarity of nodes in the graph

#### How:

- ${\color{red} \bullet}$  group  $\ell_1$  penalized estimation of the graph
- unknown grouping, but estimable from the data
- Network-like approach to estimate the communities

### Proposed model

• Suppose conditional on  $\boldsymbol{Z}_{p \times K}$ 

$$Y = Zu + \epsilon$$

ho  $m{u}$  is a random effects vector of length  $m{K}$ ,  $m{u} \sim m{N}(m{0}, m{I}_{m{K} imes m{K}})$ 

 $\triangleright \epsilon$  is a vector of random errors of length p,  $\epsilon \sim N(\mathbf{0}, \mathbf{\Sigma}_{p \times p})$ 

 $ho \; \epsilon \perp u$ 

$$\mathsf{Var}(oldsymbol{Y}|oldsymbol{Z}) = oldsymbol{Z} \mathsf{Var}(oldsymbol{u}) oldsymbol{Z}^\mathsf{T} + \mathsf{Var}(oldsymbol{\epsilon}) = oldsymbol{Z} oldsymbol{Z}^\mathsf{T} + oldsymbol{\Sigma}$$

 $m{Z} extsf{Var}(m{u}) m{Z}^ op pprox m{Z} m{B} m{Z}^ op ext{ (expect. of adjacency matrix in SBM)}$ 

• Recovering communities using covariance info. from data at the nodes

 $\neq$ 

recovering communities from random adjacency matrices

., -

### Proposed model (cont'd)

• Given *n* i.i.d copies of Y, ie  $Y_1, \ldots, Y_n$ , suppose we use

$$ZZ^{T} + S$$

as estimator for the conditional variance Var(Y|Z) $\Rightarrow S = (1/n) \sum_{i=1}^{n} Y_i Y_i^T$  is the empirical covariance matrix

Conditional on the membership matrix

$$m{Y}|m{Z}\sim N(m{0},m{\Theta}^{-1})$$

 $\triangleright \Theta$ : inverse covariance matrix (or the concentration matrix)

Negative log-likelihood proportional to

$$\mathcal{L}(\boldsymbol{\Theta}) = -\log\det\boldsymbol{\Theta} + \operatorname{tr}\{(\boldsymbol{S} + \boldsymbol{Z}\boldsymbol{Z}^{\mathsf{T}})\boldsymbol{\Theta}\} = -\log\det\boldsymbol{\Theta} + \operatorname{tr}(\boldsymbol{S}\boldsymbol{\Theta}) + \operatorname{tr}(\boldsymbol{Z}\boldsymbol{Z}^{\mathsf{T}}\boldsymbol{\Theta})$$

• In practice Z is unknown, but exact recovery is NP-hard  $\Rightarrow$  relaxation

### Objective function for ComGGL

$$\min_{\boldsymbol{\Theta}, \boldsymbol{X}} \left( \underbrace{\operatorname{tr}(\boldsymbol{S}\boldsymbol{\Theta}) - \log \det \boldsymbol{\Theta}}_{\mathcal{L}_0} + \underbrace{\operatorname{tr}(\boldsymbol{X}\boldsymbol{\Theta})}_{\mathcal{L}_1} + \underbrace{\lambda_{n1} \sum_{a \neq b} |\boldsymbol{\Theta}_{a,b}| + \lambda_{n2} \sum_{k=1}^{K_n} (\sum_{a \neq b \in \mathcal{C}_k} (\boldsymbol{\Theta}_{a,b}^k)^2)^{1/2}}_{\mathcal{L}_0} \right)$$

s.t.

- (i)  $\Theta \succ 0$  (positive definite),  $\mathbf{X} \succeq 0$  (positive semi-definite),
- (ii)  $0 \le X_{a,b} \le 1, X_{a,a} = 1$
- (iii) the membership of nodes to the kth community (ie.  $C_k$ ) depends on **X**
- (iv)  $\lambda_{n1}$  and  $\lambda_{n2}$  are assumed to be positive and known
- (v)  $K_n$  is assumed to be a known (estimable) positive integer

### Objective function for ComGGL

$$\min_{\boldsymbol{\Theta}, \boldsymbol{X}} \left( \underbrace{\operatorname{tr}(\boldsymbol{S}\boldsymbol{\Theta}) - \log \det \boldsymbol{\Theta}}_{\mathcal{L}_0} + \underbrace{\operatorname{tr}(\boldsymbol{X}\boldsymbol{\Theta})}_{\mathcal{L}_1} + \lambda_{n1} \sum_{a \neq b} |\boldsymbol{\Theta}_{a,b}| + \lambda_{n2} \sum_{k=1}^{K_n} \left( \sum_{a \neq b \in \mathcal{C}_k} (\boldsymbol{\Theta}_{a,b}^k)^2 \right)^{1/2} \right)$$

s.t.

- (i)  $\Theta \succ 0$  (positive definite),  $\mathbf{X} \succeq 0$  (positive semi-definite),
- (ii)  $0 \le X_{a,b} \le 1, X_{a,a} = 1$
- (iii) the membership of nodes to the kth community (ie.  $C_k$ ) depends on  $\boldsymbol{X}$
- (iv)  $\lambda_{n1}$  and  $\lambda_{n2}$  are assumed to be positive and known
- (v)  $K_n$  is assumed to be a known (estimable) positive integer

 $\mathcal{L}_0$  log-likelihood if the nodes were unlabeled

## Objective function for ComGGL

$$\min_{\boldsymbol{\Theta}, \boldsymbol{X}} \left( \underbrace{\operatorname{tr}(\boldsymbol{S}\boldsymbol{\Theta}) - \log \det \boldsymbol{\Theta}}_{\mathcal{L}_0} + \underbrace{\operatorname{tr}(\boldsymbol{X}\boldsymbol{\Theta})}_{\mathcal{L}_1} + \underbrace{\lambda_{n1} \sum_{a \neq b} |\boldsymbol{\Theta}_{a,b}| + \lambda_{n2} \sum_{k=1}^{K_n} \left( \sum_{a \neq b \in \mathcal{C}_k} (\boldsymbol{\Theta}_{a,b}^k)^2 \right)^{1/2} \right)$$

s.t.

- (i)  $\Theta \succ 0$  (positive definite),  $\mathbf{X} \succeq 0$  (positive semi-definite),
- (ii)  $0 \le X_{a,b} \le 1, X_{a,a} = 1$
- (iii) the membership of nodes to the kth community (ie.  $C_k$ ) depends on  $\boldsymbol{X}$
- (iv)  $\lambda_{n1}$  and  $\lambda_{n2}$  are assumed to be positive and known
- (v)  $K_n$  is assumed to be a known (estimable) positive integer
- $\mathcal{L}_0$  log-likelihood if the nodes were unlabeled
- $\mathcal{L}_1$  relates the graph info. (through  $oldsymbol{\Theta}$ ) to the labeling info. (through  $oldsymbol{X}$ )
  - $\triangleright$  structures the graph similarly to an SBM
  - ightharpoonup membership will be estimated using spectral methods on  $oldsymbol{\mathit{X}}$

### Objective function for ComGGL

$$\min_{\boldsymbol{\Theta},\boldsymbol{X}} \left( \operatorname{tr}(\boldsymbol{S}\boldsymbol{\Theta}) - \log \det \boldsymbol{\Theta} + \operatorname{tr}(\boldsymbol{X}\boldsymbol{\Theta}) + \underbrace{\lambda_{n1} \sum_{a \neq b} |\boldsymbol{\Theta}_{a,b}| + \lambda_{n2} \sum_{k=1}^{K_n} \left( \sum_{a \neq b \in \mathcal{C}_k} (\boldsymbol{\Theta}_{a,b}^k)^2 \right)^{1/2}}_{\mathcal{L}_2} \right)$$

s.t.

- (i)  $\Theta \succ 0$  (positive definite),  $\mathbf{X} \succeq 0$  (positive semi-definite),
- (ii)  $0 \le X_{a,b} \le 1, X_{a,a} = 1$
- (iii) the membership of nodes to the kth community (ie.  $C_k$ ) depends on **X**
- (iv)  $\lambda_{n1}$  and  $\lambda_{n2}$  are assumed to be positive and known
- (v)  $K_n$  is assumed to be a known (estimable) positive integer
- $\mathcal{L}_0$  log-likelihood if the nodes were unlabeled
- $\mathcal{L}_1$  relates the graph info. (through  $\Theta$ ) to the labeling info. (through X)  $\triangleright$  structures the graph similarly to an SBM
  - $\triangleright$  membership will be estimated using spectral methods on  ${m X}$
- $\mathcal{L}_2$  effect of the grouping of the nodes on the estimation of the graph
  - $\vartriangleright$   $\ell_1$ -term that shrinks small entries of  $oldsymbol{\Theta}$  to 0 (sparsity)
  - □ grouping term to make entries in the community more similar

#### **Properties**

#### Frobenius norm convergence:

(1) Under suitable regularity conditions there exist estimators  $(\hat{\Theta}, \hat{X})$  obtained based on the objective function  $\ell(\Theta, X)$  s.t.

$$\max(||\hat{\boldsymbol{\Theta}} - \boldsymbol{\Theta}_0||_F, ||\hat{\boldsymbol{X}} - \boldsymbol{Z}\boldsymbol{Z}^\mathsf{T}||_F) = O_p\Big(\max\big\{\sqrt{(p_n + s_n)\frac{\log p_n}{n}}, \sqrt{\frac{p_n^2}{nK_n} - \frac{p_n}{n}}\big\}\Big).$$

#### Sparsistency:

(2) Under suitable regularity conditions, for estimators  $(\hat{\mathbf{O}}, \hat{\mathbf{X}})$  based on the objective function  $\ell(\mathbf{O}, \mathbf{X})$  that satisfy (i)  $||\hat{\mathbf{O}} - \mathbf{O}_0|| = O_p(\sqrt{\eta_{n1}})$  and (ii)  $||\hat{\mathbf{X}} - \mathbf{Z}\mathbf{Z}^{\mathsf{T}}|| = O_p(\sqrt{\eta_{n2}})$  for sequences  $\eta_{n1}, \eta_{n2} \to 0$  if

$$\sqrt{\frac{\log p_n}{n}} + \sqrt{\eta_{n1}} + \sqrt{\eta_{n2}} + \lambda_{n2} \Theta_{a,b}^k / \sqrt{\sum_{a \neq b \in \mathcal{C}_k} (\Theta_{a,b}^k)^2} = O(\lambda_{n1}),$$

with probability tending to 1,  $\hat{\mathbf{\Theta}}_{a,b} = 0$  for all  $(a,b) \in \mathcal{S}^c$  from the k-th community.

# Properties (cont'd)

#### Spectral clustering:

(3) Let  $Q \Lambda Q^T$  be the eigen decomp. of  $ZZ^T$ . There exists a matrix  $W_{K_n \times K_n}$  with real elements s.t. Q = ZW and

$$||\boldsymbol{W}_{l} - \boldsymbol{W}_{m}|| = \{(\#\mathcal{C}_{l})^{-1} + (\#\mathcal{C}_{m})^{-1}\}^{1/2} \qquad \forall 1 \leq l < m \leq K_{n}.$$

ightharpoonup Eigenvectors  $oldsymbol{Q}$  contain info. about the community membership matrix  $oldsymbol{Z}$ 

# Properties (cont'd)

### Spectral clustering:

(3) Let  $Q \Lambda Q^T$  be the eigen decomp. of  $ZZ^T$ . There exists a matrix  $W_{K_n \times K_n}$  with real elements s.t. Q = ZW and

$$||\boldsymbol{W}_{l} - \boldsymbol{W}_{m}|| = \{(\#\mathcal{C}_{l})^{-1} + (\#\mathcal{C}_{m})^{-1}\}^{1/2} \qquad \forall 1 \leq l < m \leq K_{n}.$$

 $\triangleright$  Eigenvectors  ${\it Q}$  contain info. about the community membership matrix  ${\it Z}$   $\triangleright$  SC with  ${\it k}$ -means:

$$(\hat{\pmb{Z}},\hat{\pmb{W}}) = \arg\min_{\pmb{Z} \in \mathbb{M}_{
ho_n imes K_n}, \pmb{W} \in \mathbb{R}_{K_n imes K_n}} ||\pmb{Z} \pmb{W} - \hat{\pmb{Q}}||_F^2$$

where  $\hat{Q}\hat{\Lambda}\hat{Q}^{\mathsf{T}}$  is the  $K_n$ -dimensional eigen decomp. of X.

### Properties (cont'd)

#### Spectral clustering:

(3) Let  $Q \Lambda Q^T$  be the eigen decomp. of  $Z Z^T$ . There exists a matrix  $W_{K_n \times K_n}$  with real elements s.t. Q = Z W and

$$||\mathbf{W}_{l} - \mathbf{W}_{m}|| = \{(\#\mathcal{C}_{l})^{-1} + (\#\mathcal{C}_{m})^{-1}\}^{1/2} \qquad \forall 1 \leq l < m \leq K_{n}.$$

 $\triangleright$  Eigenvectors  ${\it Q}$  contain info. about the community membership matrix  ${\it Z}$   $\triangleright$  SC with  ${\it k}$ -means:

$$(\hat{\pmb{Z}},\hat{\pmb{W}}) = \arg\min_{\pmb{Z} \in \mathbb{M}_{
ho_n imes K_n}, \pmb{W} \in \mathbb{R}_{K_n imes K_n}} ||\pmb{Z} \pmb{W} - \hat{\pmb{Q}}||_F^2$$

where  $\hat{Q}\hat{\Lambda}\hat{Q}^{\mathsf{T}}$  is the  $K_n$ -dimensional eigen decomp. of X. Labeling consistency:

(4) Let  $S_k$  denote the sets of misclassified nodes from the kth community and  $\hat{\boldsymbol{Z}}$  be the result of the spectral clustering. There exists a constant c > 0 s.t.

$$\sum_{k=1}^{K_n} \# S_k / \# \mathcal{C}_k \le c^{-1} (2+\xi) n^{-1/2} (p_n^2 - K_n p_n)^{1/2}.$$

# Graphs and Communities: ComGGL vs. CORD



# Graphs and Communities: ComGGL vs. CORD



# Graphs and Communities: ComGGL vs. CORD



# Take-home message

- Estimation of brain pathways with penalized undirected graphs
- Joint estimation of the graph and underlying communities
- Account for communities when estimating the graph
- Account for graph when estimating the communities

PGM



Network Analysis

### Simulation settings

Sample size n = 100 or 1000Number of communities K = 3Number of nodes  $(p^1, p^2, p^3) = (20, 20, 20)$ Prob. edges within community  $\pi_w = .5$  or .8 Prob. edges between communities  $\pi_b = .1$ , .2 or .3

Performance measures (closer to 1 is better):

■ Frobenius norm relative to the oracle (knows G(E, V), K and Z):  $\text{Fr} = \mid\mid \hat{\Theta} - \Theta^0\mid\mid_F = \sqrt{\sum_{i=1}^p \sum_{j=1}^p |\hat{\theta}_{ij} - \theta_{ij}|^2}$ 

$$|Fr| = ||\hat{\Theta} - \Theta^0||_F = \sqrt{\sum_{i=1}^p \sum_{j=1}^p |\hat{\theta}_{ij} - \theta_{ij}|^2}$$

• 
$$F_1 = \frac{2PR}{P+R}$$
 where 
$$\begin{cases} P = \frac{\#\text{estimated edges that are true edges}}{\#\text{estimated edges that are true edges}} \\ R = \frac{\#\text{estimated edges that are true edges}}{\#\text{true edges}} = TPR \end{cases}$$

- K accuracy relative to oracle
- Labeling accuracy.

### Simulation results



# Computational aspects for ComGGL



- ullet  $oldsymbol{\Theta}$  and the community structure depend on one another
- lacktriangle structure of the communities is informative for the estimation of  $oldsymbol{\Theta}$
- ullet to estim. communities we need  $oldsymbol{\Theta}$  & to estim.  $oldsymbol{\Theta}$  we need the communities
- ADMM algorithm where we update  $\Theta|X$  and  $X|\Theta$  until convergence
- Convergence follows due to biconvexity
- Complexity  $O(p^3)$  (due to eigen decomposition)

# Convergence fMRI example



# ROI names

| ROI | Name                             | ROI | Name                        | ROI | Name                     |
|-----|----------------------------------|-----|-----------------------------|-----|--------------------------|
| 1   | Bankssts                         | 12  | Lateraloccipital            | 23  | Postcentral              |
| 2   | ${\it Caudalanterior cingulate}$ | 13  | Lateralorbitofrontal        | 24  | Posteriorcingulate       |
| 3   | Caudalmiddlefrontal              | 14  | Lingual                     | 25  | Precentral               |
| 4   | Cuneus                           | 15  | $Media \\ lorbit of rontal$ | 26  | Precuneus                |
| 5   | Entorhinal                       | 16  | Middletemporal              | 27  | Rostralanteriorcingulate |
| 6   | Frontalpole                      | 17  | Paracentral                 | 28  | Rostralmiddlefrontal     |
| 7   | Fusiform                         | 18  | Parahippocampal             | 29  | Superiorfrontal          |
| 8   | Inferiorparietal                 | 19  | Parsopercu <b>l</b> aris    | 30  | Superiorparietal         |
| 9   | Inferiortemporal                 | 20  | Parsorbita <b>l</b> is      | 31  | Superiortemporal         |
| 10  | Insula                           | 21  | Parstriangularis            | 32  | Supramarginal            |
| 11  | Isthmuscingulate                 | 22  | Pericalcarine               | 33  | Temporalpole             |
|     |                                  |     |                             | 34  | Transversetemporal       |

Table: fMRI data. Correspondence between numbers and names of the regions of interest.