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Motivation: specific fMRI design

Graph theoretical framework

= G=(E,V)
= Toeachrv Y;... Y, anodein V ={1...p} is associated
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= G=(E,V) = G=(E,V)
= Toeachrv Yi... Y, anodein V = {1...p} is associated. = Toeachrv Yi... Y, anodein V ={1...p} is associated.

(a,b)U(b,a) € E a—b aneighbor of b e ° (a,b)U(b,a) € E a—b aneighbor of b e °

= Markov property:

alc|V \{ac}iff (a,c)U(c,a) ¢ E (e.g. a L c|b)

= If Y ~ N(0,07") then (a,c) U (c,a) ¢ Eiff@,. =0
= (Unknown) Structure of G = Non-zero entries of ©

= Enforce sparsity on © (by shrinking ‘small' coeff. to 0) crucial when p > n
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Network theoretical framework

= Network data: represented by a graph with n nodes via Adjacency matrix

i 1 if there is an edge between nodes a and b
Anxn, With Aa,b = .
0 otherwise
= For each node a let Z, € {0,1}X be a (unobserved) labeling vector
= Let Bxxk: specify prob. of edges within/between the communities
= The rv. A, iid Bernoulli with E(A,5|Z,, Z)) = ZIBZb

Membership matrix: Zpxx = [Z1,Z2,. .., Z,,]T then E(A|Z) = ZBZ'

-3 S,

Olhede, S. C. and Wolfe, P. J. (2014). Network histograms and universality of blockmodel approximation. PNAS, 11(41), 14722-14727.
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= Network data: represented by a graph with n nodes via Adjacency matrix

i 1 if there is an edge between nodes a and b

Anxn, With Aa,b = .

0 otherwise

= For each node a let Z, € {0,1}X be a (unobserved) labeling vector

= Let Bxyxk: specify prob. of edges within/between the communities

= The rv. A, iid Bernoulli with E(A,5|Z,, Z)) = ZIBZb
Membership matrix: Z

Olhede, S. C. and Wolfe, P. J. (2014). Network histograms and universality of blockmodel approximation. PNAS, 11(41), 14722-14727.
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Community-based group graphical lasso

What:
= an ‘all-at-once’ procedure that bridges PGMs and networks

= joint estimation of (i) edges and (ii) communities of similar nodes

Why:
= functional connectivity within the brain

= evaluate homogeneity/similarity of nodes in the graph

How:
= group {1 penalized estimation of the graph
= unknown grouping, but estimable from the data

= Network-like approach to estimate the communities

Proposed model

= Suppose conditional on Z, k
Y=Zu+e¢

> u is a random effects vector of length K, u ~ N(0, Ixxk)
> € is a vector of random errors of length p, € ~ N(0,X,,)
>elu

Var(Y|Z) = ZVar(u)Z" + Var(e) = ZZ" + ¥

ZVar(u)Z" & ZBZ" (expect. of adjacency matrix in SBM)

= Recovering communities using covariance info. from data at the nodes

+

recovering communities from random adjacency matrices

~




Proposed model (cont'd) Objective function for ComGGL

Kn
= Given n i.i.d copies of Y, ie Y1,..., Y, suppose we use mixn (tr(SG)) — logdet® + tr(XO) + An Z 1©,5] + An2 Z( Z (@gyb)2)1/2>
’ ——
ZZT LS Lo pS a#b k=1 a#b&Cyx
Lo

as estimator for the conditional variance Var(Y|Z)

. . . . s.t.
> S =(1/n) 3", Y;Y[ is the empirical covariance matrix

(i) © > 0 (positive definite), X = 0 (positive semi-definite),

)
= Conditional on the membership matrix (i) 0<Xap <1, Xap=1
(iii) the membership of nodes to the kth community (ie. Cx) depends on X
Y|Z~N(0,071) (iv) An1 and A, are assumed to be positive and known
> @ : inverse covariance matrix (or the concentration matrix) (v) Kn is assumed to be a known (estimable) positive integer

= Negative log-likelihood proportional to

L(®) = —logdet @ +tr{(S+ZZ")O} = —log det © + t1(SO) +t1(ZZ' O©)

= In practice Z is unknown, but exact recovery is NP-hard = relaxation



Objective function for ComGGL

min (tr(SG)) ~ logdet®

)

Lo

s.t.
(i
(ii

O > 0 (positive definite), X = 0 (positive semi-definite),

0< Xa.b <1, Xa.a =1

(iii) the membership of nodes to the kth community (ie. Cx) depends on X
(iv) An1 and A, are assumed to be positive and known

(v) K, is assumed to be a known (estimable) positive integer

— N —

Lo log-likelihood if the nodes were unlabeled

Objective function for ComGGL

min
0.X

s.t.

)
(if)
(iii)
(iv)
(v)
Lo
Ly

(

tr(X0)
———
Ly

(i) © > 0 (positive definite), X = 0 (positive semi-definite),

0<Xap <1, Xga=1

the membership of nodes to the kth community (ie. Cx) depends on X
An1 and A, are assumed to be positive and known

K., is assumed to be a known (estimable) positive integer

log-likelihood if the nodes were unlabeled

relates the graph info. (through ©) to the labeling info. (through X)
D> structures the graph similarly to an SBM

> membership will be estimated using spectral methods on X



Objective function for ComGGL

Kn
rcl)wixn ( Ant Z 1©a6| + A2 Z( Z (@g,b)2)1/2>

a#b k=1 a;ébECk

Lo
s.t.
(i) © > 0 (positive definite), X = 0 (positive semi-definite),
(i) 0< Xop <1, Xyp=1
(iii) the membership of nodes to the kth community (ie. Cx) depends on X
(iv) An1 and A, are assumed to be positive and known
(v) K, is assumed to be a known (estimable) positive integer

Lo log-likelihood if the nodes were unlabeled
L1 relates the graph info. (through ©) to the labeling info. (through X)
D> structures the graph similarly to an SBM
> membership will be estimated using spectral methods on X
L, effect of the grouping of the nodes on the estimation of the graph
> {1-term that shrinks small entries of @ to O (sparsity)
> grouping term to make entries in the community more similar

Properties

Frobenius norm convergence:

(1) Under suitable regularity conditions there exist estimators (@, X) obtained
based on the objective function £(0, X) s.t.

R . lo 2
max(||®—Boll, [|X=ZZ"||) = Op( max {y/(pn+s0) =200, [-L P},

Sparsistency:

(2) Under suitable regularity conditions, for estimators (©, X) based on the
objective function ¢(0, X) that satisfy (i) ||@ — ©q|| = Op(\/7m1) and (ii)
||5( — ZZTH = Op(/Tn2") for sequences 1y1, Nn2 — 0 if

log pn
V gnp + VM1 + /M2 + )‘HZGI;,IJ/ Z (eg,b)2 = O0(Am),
a#beCx

with probability tending to 1, ©,, = 0 for all (a, b) € S from the k-th
community.



Properties (cont’'d)

Spectral clustering:

(3) Let QAQ" be the eigen decomp. of ZZ". There exists a matrix Wk, <k,
with real elements s.t. @ = ZW and

W) — W] = {(#C)) " + (#Cm) 1 }/2

> Eigenvectors @ contain info. about the community membership matrix Z

Vi</!<m<K,.

Properties (cont’'d)

Spectral clustering:

(3) Let QAQ" be the eigen decomp. of ZZ". There exists a matrix Wk, xk,
with real elements s.t. @ = ZW and

W) — W] = {(#C)) " + (#Cm) 1 }/2

> Eigenvectors @ contain info. about the community membership matrix Z
> SC with k-means:

Vi</!<m<K,.

(Z,W) = arg 1zw - Q|I

min
ngpn X KanG]RKn x Kn

where QAOT is the K,-dimensional eigen decomp. of X.



Properties (cont’d) Graphs and Communities: ComGGL vs. CORD

Spectral clustering:
(3) Let QAQ" be the eigen decomp. of ZZ". There exists a matrix Wx, xk,

with real elements s.t. Q = ZW and
Wi = Wl = {(#C) "+ (#Cm) }? VIS T<m<K,

> Eigenvectors @ contain info. about the community membership matrix Z
> SC with k-means:

Z W) =ar min ZW — (AJ 2
(Z, W) L I Iz
AT . . . 1 11 11 1 1 x d
where QAR is the K,-dimensional eigen decomp. of X. 1y T ol
Labeling consistency: P | - S e -
. or . 5 1 9
(4) Let S denote the sets of misclassified nodes from the kth community and Z L | N I, T | N 1K
be the result of the spectral clustering. There exists a constant ¢ > 0 s.t. %Q 2 4 £44 122 .8 i SR
2433‘% 222 44323 221112 2, 2 N
2 2, 1
< —1 —1/2/ 2 1/2 i 242 w O 2 s ki 22 s 3,2 b
S H#S#C < T2+ n V2 (p2 — Kupa) /2. LF ey biae - R &
p 6 o g 6 é p N o 4 © 1l

k=1
6 6 1 4
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Graphs and Communities: ComGGL vs. CORD Graphs and Communities: ComGGL vs. CORD




Take-home message

= Estimation of brain pathways with penalized undirected graphs
= Joint estimation of the graph and underlying communities
= Account for communities when estimating the graph

= Account for graph when estimating the communities

Network Analysis
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Simulation settings Simulation results

QO v 2
Sample size n = 100 or 1000 o ° g
oy <
Number of communities K = 3 2« v 3 g o © R
—= - [ o o 0
Number of nodes (p', p?, p*) = (20, 20, 20) 0 ComGGL, o g 8 o3 B .
. . . [%2] v v
Prob. edges within community 7, = .5 or .8 © ComGGL, ERE & - °o%6 s oVo
.. ~ GL & sbmSDP c v v vy . v v
Prob. edges between communities 7, = .1, .2 or .3 1 GL & GSBM 2
[e]
GL & CORD =
. clusterGL_Single ILODDDDDDDOOOOO ODDDDDDDDDDDD
Performance measures (closer to 1 is better): o clusterGL_Average SEE2E2:282¢8¢¢8 AN SN EENENER
. . v clusterGL_Complete 238383838383 838228282 a28328as
= Frobenius norm relative to the oracle (knows G(E, V), K and Z): —-omP EEERERERERE SEERRRERREE
1A 0 _ p P oh o
Fr=I1 6 — ©° |lp= /20 X204 185 — 051 g :
. s v o 9 R
p _ #estimated edges that are true edges o ¢ MRS A
= 0 o
. F, — 2PR \here ] #estimated edges = g |gees
1= P¥R R #estimated edges that are true edges TPR o _ 3ol ¢
= = » o ® 10 o ©C o <
#true edges 4 kS 60 © o o
. o [}
= K accuracy relative to oracle 3 2
5] @ o8 oo Pos Boa Boa B®oa _) v g v vV YV ov v
= |abeling accuracy. S . < v

S20W.5B.1N100
S20W.5B.1N1000
S20W.58.2N100
S20W.5B.2N1000
S20W.5B.3N100
S20W.5B.3N1000
S20W.8B.1N100
S20W.8B.1N1000
S20W.88.2N100
S20W.8B.2N1000
S20W.88.3N100
S20W.8B.3N1000
S20W.5B.1N100
S20W.5B.1N1000
S20W.5B.2N100
S20W.5B.2N1000
S20W.5B.3N100
S20W.5B.3N1000
S20W.8B.1N100
S20W.8B.1N1000
S20W.8B.2N100
S20W.8B.2N1000
S20W.8B.3N100
S20W.8B.3N1000



Computational aspects for ComGGL Convergence TMRI example

500 1 57 7e-04 571 0.0039 107 7
ol
400 4 4 8
7]
c
. . '2300< 3 39 6
Community labels |—>| Grouping penalty 2 . o
It o) 53 -
[ 1 1 X 5
5 2 =
2500 2 24 4
(@]
3]
= © and the community structure depend on one another
100 14 14 24
= structure of the communities is informative for the estimation of @
. .y . . . 1‘
= to estim. communities we need @ & to estim. ©@ we need the communities
. . 0- 0- 0- 0
= ADMM algorithm where we update @|X and X|@ until convergence I — ———— —— —————
1 51 151 251 1 51 151 251 1 51 151 251 1 51 151 251
n Convergence follows due to biconvexity Iteration Iteration Iteration Iteration

= Complexity O(p3) (due to eigen decomposition)



ROl names

ROl Name|ROI Name|ROI Name
1 Bankssts| 12 Lateraloccipital | 23 Postcentral
2 Caudalanteriorcingulate| 13 Lateralorbitofrontal | 24 Posteriorcingulate
3 Caudalmiddlefrontal | 14 Lingual | 25 Precentral
4 Cuneus| 15 Medialorbitofrontal| 26 Precuneus
5 Entorhinal| 16 Middletemporal| 27 Rostralanteriorcingulate
6 Frontalpole| 17 Paracentral | 28 Rostralmiddlefrontal
7 Fusiform| 18  Parahippocampal| 29 Superiorfrontal
8 Inferiorparietal | 19 Parsopercularis| 30 Superiorparietal
9 Inferiortemporal| 20 Parsorbitalis| 31 Superiortemporal
10 Insula| 21 Parstriangularis| 32 Supramarginal
11 Isthmuscingulate| 22 Pericalcarine| 33 Temporalpole

34 Transversetemporal

Table: fMRI data. Correspondence between numbers and names of the regions of
interest.



