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Motivation example

Flury (1988) conducted a Principal Component Analysis (PCA) of
the (celebrated) Swiss banknotes data. Flury (1988) focused on four
measurements, namely the width L of the left side of the banknote,
the width R on its right side, the width B of the bottom margin
and the width T of the top margin, all measured in mm×10−1 on
n = 85 counterfeit bills made by the same forger.



The resulting sample covariance matrix is

S =


6.41 4.89 2.89 −1.30
4.89 9.40 −1.09 0.71
2.89 −1.09 72.42 −43.30
−1.30 0.71 −43.30 40.39

 ,

with eigenvalues of λ̂1 = 102.69, λ̂2 = 13.05, λ̂3 = 10.23 and
λ̂4 = 2.66, and corresponding eigenvectors :

θ̂θθ1 =


.032
−.012
.820
−.571

 θ̂θθ2 =


.593
.797
.057
.097



θ̂θθ3 =


−.015
−.129
.566
.814

 θ̂θθ4 =


.804
−.590
−.064
−.035





Flury concludes that the first principal component is a contrast
between B and T . It is tempting to interpret the second principal
component as an aggregate of L and R. Flury, however, explicitly
writes “beware : the second and third roots are quite close and so
the computation of standard errors for the coefficients of θ̂θθ2 and θ̂θθ3
may be hazardous”. In other words, Flury, due to the structure of
the spectrum, refrains from drawing any conclusion about the
second principal component.



Question : can we say something about the true underlying
eigenvector θθθ2 when the true underlying eigenvalues λ2 and λ3 are
“very close to each other” ? That is under a situation of weak
identifiability of θθθ2 ?

Testing problem : throughout the presentation, we consider the
problem of testing the null hypothesis H0 : θθθ1 = θθθ01 against the
alternative H1 : θθθ1 6= θθθ01, where θθθ01 is a given unit vector of Rp. We
will consider situations where λ1 − λ2 is small.
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Working context

Gaussian framework :

"

triangular array of observations Xni , i = 1, . . . , n, n = 1, 2, . . . ;
where Xn1, . . . ,Xnn form a random sample from the p-variate
normal distribution with mean µµµn and covariance matrix

ΣΣΣn := σ2n(Ip + rnv θθθ1θθθ
′
1)

= σ2n(1 + rnv)θθθ1θθθ
′
1 + σ2n(Ip − θθθ1θθθ′1),

where v is a positive real number, (σ2n) is a positive real
sequence, (rn) is a bounded nonnegative real sequence, and I`
denotes the `-dimensional identity matrix.
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A torough asymptotic investigation of this problem requires to
discuss four different regimes :

(i) rn ≡ 1 ;

(ii) rn = o(1) with
√
nrn →∞ ;

(iii) rn = 1/
√
n ;

(iv) rn = o(1/
√
n).
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Under the null : Anderson’s test

The likelihood ratio test rejects the null at asymptotic level α when

QA := n
(
λ̂1θθθ

0′
1 S
−1θθθ01 + λ̂−11 θθθ0′1 Sθθθ

0
1 − 2

)
> χ2

p−1,1−α.

Theorem
Fix a unit p-vector θθθ01, v > 0 and a nonnegative real sequence (rn)
satisfying (i) rn ≡ 1 or (ii) rn = o(1) with

√
nrn →∞. Then,

under Pθθθ01,rn,v
,

QA
D→ χ2

p−1,

so that, in regimes (i)-(ii), the test φA has asymptotic size α under
the null.
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Under the null : Le Cam optimal test

This test rejects the null at asymptotic level α when

QHPV :=
n

λ̂1

p∑
j=2

λ̂−1j

(
θ̃θθ
′
jSθθθ

0
1

)2
> χ2

p−1,1−α,

where θ̃θθj , j = 2, . . . , p, are defined recursively through a

Gram-Schmidt orthogonalization of θθθ01, θ̂θθ2, . . . , θ̂θθp, where θ̂θθj is a unit

eigenvector of S associated with the eigenvalue λ̂j , j = 2, . . . , p.

Theorem
Fix a unit p-vector θθθ01, v > 0 and a bounded nonnegative real
sequence (rn). Then, under Pθθθ01,rn,v

,

QHPV
D→ χ2

p−1,

so that, in all regimes (i)-(iv) from the previous section, the
test φHPV has asymptotic size α under the null.
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Under the null : Simulations

Figure – Empirical rejection frequencies of the tests φHPV and φA
performed at nominal level 5%. Results are based on M = 10, 000
independent ten-dimensional Gaussian random samples.



Under the null : Anderson’s test

Theorem
Fix p = 2, a unit p-vector θθθ01, v > 0 and a nonnegative real
sequence (rn) such that

√
nrn → 0. Then, under Pθθθ01,rn,v

,

QA
D→ 4χ2

p−1,

so that, irrespective of α ∈ (0, 1), the test φA has an asymptotic
size under the null that is strictly larger than α.



Summary

I Unlike φA, the test φHPV is validity-robust to weak
identifiability ;

I but the trivial level-α test, that randomly rejects the null with
probability α, enjoys the same robustness property ;

⇒ it motivates to investigate whether or not the
validity-robustness of φHPV is obtained at the expense of
efficiency.
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Non-null results

Theorem
Fix a unit p-vector θθθ01, v > 0 and a nonnegative real sequence
(rn) satisfying (i) rn ≡ 1 or (ii) rn = o(1) with

√
nrn →∞. Then

under Pθθθ01+τττn/(
√
nrn),rn,v

, with (τττn)→ τττ , the statistic QHPV is
asymptotically non-central chi-square with p − 1 degrees of freedom
and with non-centrality parameter (v2/(1 + δv))‖τττ‖2 (δ = 1 in
regime (i) and δ = 0 in regime (ii)).



Non-null results

Theorem

(iii) When rn = 1/
√
n, QHPV, under Pθθθ01+τττn,rn,v

, with (τττn)→ τττ , is
asymptotically non-central chi-square with p − 1 degrees of
freedom and with non-centrality parameter

v2

16
‖τττ‖2

(
4− ‖τττ‖2

)(
2− ‖τττ‖2

)2
.

(iv) When rn = o(1/
√
n), QHPV, under Pθθθ01+τττn,rn,v

, with (τττn)→ τττ ,
is asymptotically chi-square with p − 1 degrees of freedom



What about optimality ?

By studying the present hypothesis testing context through the Le
Cam theory, one can show that the sequence of models is LAN in
regimes (i), (ii) and (iv).

This leads to the conclusion that φHPV is optimal (locally and
asymptotically) in these regimes. Note that the optimality in regime
(iv) is trivial, in the sense that no test can detect the most severe
alternatives.

For the regime (iii), unfortunately we don’t have such a LAN
situation. But φHPV is rate-consistent .
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Figure – (Left :) Non-centrality parameters, as a function
of ‖τττ‖(∈ [0,

√
2]), in the asymptotic non-central chi-square distributions of

the test statistics of φHPV and φoracle, respectively, under alternatives of
the form Pθθθ01+τττ,1/

√
n,1. (Right :) The corresponding asymptotic power

curves in dimensions p = 2 and p = 3.



Back to the starting example

Flury (1988) conducted a Principal Component Analysis (PCA) of
the (celebrated) Swiss banknotes data. Flury (1988) focused on four
measurements, namely the width L of the left side of the banknote,
the width R on its right side, the width B of the bottom margin
and the width T of the top margin, all measured in mm×10−1 on
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Flury concludes that the first principal component is a contrast
between B and T . It is tempting to interpret the second principal
component as an aggregate of L and R. Flury, however, explicitly
writes “beware : the second and third roots are quite close and so
the computation of standard errors for the coefficients of θ̂θθ2 and θ̂θθ3
may be hazardous”. In other words, Flury, due to the structure of
the spectrum, refrains from drawing any conclusion about the
second component.



The considerations above make it natural to test that L and R
contribute equally to the second principal component and that they
are the only variables to contribute to it. In other words, it is natural
to test the null hypothesis H0 : θθθ2 = θθθ02, with θθθ02 := (1, 1, 0, 0)′/

√
2.

I The HPV test provides a p-value equal to .177 ⇒ does not lead
to rejection of the null hypothesis at any usual nominal level.

I The Anderson test provides a p-value equal to 0.099 ⇒ rejects
the null at the level 10%.

But following the results that we presented before, practitioners
should here be confident that the HPV test provides the right
decision, since the Anderson test tends to strongly overreject the
null when eigenvalues are close.
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Figure – Boxplots of the 85 “leave-one-out” p-values of the HPV test
(left) and Anderson test (right) when testing the null
hypothesis H0 : θθθ2 := (1, 1, 0, 0)′/

√
2.



Conclusion

We saw here that the the HPV test is

I validity-robust to weak identifiability,

I essentially locally and asymptotically optimal.

A possible research perspective is to look at this problem in the
high-dimensional case.
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