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Infectious diseases and their transmission

Infectious diseases are caused by pathogenic
biological agents.

The spreading of infectious agents is called
transmission.

Example: measles is transmitted from person
to person primarily by the airborne route.

The majority of transmission models are
deterministic compartmental models.
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The Susceptible-Infected-Recovered (SIR) model
21
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Figure 3.1 Flow diagram for the compartmental SIR model: Individuals are born into the
susceptible class S and move to the infected state I at rate λ(a, t), after which they
recover and move to R at rate γ(a, t). All individuals are subject to natural mortality at rate
µ(a, t) and infected individuals to an additional disease-related mortality at rate α(a, t)

(η(a, t) = µ(a, t) + α(a, t)).

neglected (α(a, t) ≈ 0), which is a tenable assumption for example for childhood
infections in developed countries. Further, the population may be assumed to have
reached a demographic equilibrium implying that the age distribution is stationary,
i.e. the number of births and deaths is considered constant over time and exactly
balanced, entailing a constant population of size N . Under the aforementioned en-
demic and demographic equilibrium assumptions and no disease-related mortality,
the time-dependency in the set of partial differential equations (3.1) disappears. Con-
sequently, we end up with the following set of ordinary differential equations (ODEs)
in age:

dS∗(a)

da
= − [λ(a) + µ(a)]S∗(a),

dI∗(a)

da
= λ(a)S∗(a)− [γ(a) + µ(a)] I∗(a), (3.2)

dR∗(a)

da
= γ(a)I∗(a)− µ(a)R∗(a).

The set of equations in (3.2), defining the time-homogeneous or static model (An-
derson and May, 1991), implies the following ODE for the stationary population age
distributionN(a):

dN(a)

da
= −µ(a)N(a), (3.3)

which can be solved by separation of variables yielding

N(a) = N(0)e−
∫ a
0 µ(u)du = N(0)φ(a). (3.4)

Based on equation (3.4), the number of birthsB and the number of deaths are exactly
balanced, namely

B = N(0) =

∫ ∞

0
µ(a)N(a)da,

Figure: Flow diagram for the compartmental SIR model: Individuals are
born into the susceptible class S and move to the infected state I at rate
λ(a, t), after which they recover and move to R at rate γ(a, t). All
individuals are subject to natural mortality at rate µ(a, t) and infected
individuals to an additional disease-related mortality at rate α(a, t). It is
assumed that η(a, t) = µ(a, t) + α(a, t).
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Time-homogeneous SIR model

The time-homogeneous SIR model can be described using the
following set of ordinary differential equations (ODEs) in age:

dS(a)

da
= − [λ(a) + µ(a)] S(a) ,

dI (a)

da
= λ(a)S(a)− [γ(a) + η(a)] I (a) ,

dR(a)

da
= γ(a)I (a)− µ(a)R(a) ,

where S(a), I (a) and R(a) represent the number of
susceptible, infected and recovered individuals of age a.

The total number of individuals of age a in the population is
N(a) = S(a) + I (a) + R(a).
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Susceptible-Infected-Recovered-Susceptible (SIRS) model
58
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Figure 6.4 Flow diagram for the time-heterogeneous compartmental SIRS model:
Individuals are born into the susceptible class S and move to the infected state I at rate
λ(a, t), after which they recover and move to R at rate γ(a, t). Subsequently, individuals
loose protective immunity and move back to S at replenishment rate σ(a, t). All individuals
are subject to natural mortality at rate µ(a, t).

∂S∗(a, t|z)
∂a

+
∂S∗(a, t|z)

∂t
= − [λ(a, t|z) + µ(a, t)]S∗(a, t|z)

+ σ(a, t)R∗(a, t|z),
∂I∗(a, t|z)

∂a
+
∂I∗(a, t|z)

∂t
= λ(a, t|z)S∗(a, t|z)
− [γ(a, t) + µ(a, t)] I∗(a, t|z),

∂R∗(a, t|z)
∂a

+
∂R∗(a, t|z)

∂t
= γ(a, t)I∗(a, t|z)
− [σ(a, t) + µ(a, t)]R∗(a, t|z).

In case of assumptions (1) – (4), the corresponding set of ODEs is given by:

dS(a|z)
da

= −λ(a|z)S(a|z) + σ(a)R(a|z),
dI(a|z)
da

= λ(a|z)S(a|z)− γ(a)I(a|z),
dR(a|z)
da

= γ(a)I(a|z)− σ(a)R(a|z).

Solving the set of ordinary differential equations and making use of R(a|z) ≈ 1 −
S(a|z), one obtains the following expressions for the proportions of susceptibles and
seropositives:

S(a|z) = e−
∫ a
0 [λ(u|z)+σ(u)]du +

∫ a

0
σ(u)e−

∫ a
u [λ(v|z)+σ(v)]dvdu, (6.3)

R(a|z) =

∫ a

0
λ(u|z)e−

∫ a
u [λ(v|z)+σ(v)]dvdu.

Figure: Flow diagram for the time-heterogeneous SIRS model: Individuals
are born into the susceptible class S and move to the infected state I at
rate λ(a, t), after which they recover and move to R at rate γ(a, t).
Subsequently, individuals loose protective immunity and move back to S
at replenishment rate σ(a, t). All individuals are subject to natural
mortality at rate µ(a, t).
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Heterogeneities in the transmission of infectious diseases

Individuals in a population show variation with respect to
properties that are relevant to the transmission of infections.

Heterogeneities exist due to variation between individuals in

susceptibility to infection;
infectiousness, once infected;
activity levels in interacting with other individuals.

Heterogeneity of a population may affect both
1 the way in which infections are transmitted within it,
2 and the effectiveness of strategies to control them.

Allowing for individual heterogeneity in statistical and
mathematical models of infectious diseases is important.
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How to quantify heterogeneities?

Models often involve specifying contact rates between
individuals.

A contact is an event during which transmission of infection
between two individuals could occur.

For most types of infection, there is no event that can be
clearly or uniquely defined as a contact.

For these infections it is usually necessary to define a contact
by some proxy variable.
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Quantifying heterogeneities: frailty modelling approach

A different approach to make inferences on heterogeneities
uses the fact that they leave an epidemiological footprint.

The extent of heterogeneity in behaviour relevant to the
transmission of infection will be reflected by the strength of
the association between infections.

The degree of heterogeneity can be estimated using
multivariate frailty models for the hazard of infection.

This approach enables us to observe the effects of
heterogeneity without explicitly specifying the mechanisms
that give rise to them.
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Modelling individual effects

To facilitate the notation, it is assumed that age, denoted a, is
the only measured attribute of an individual.

Each individual has unobserved (latent) characteristics z with
density f (z); z comprises age-invariant random variables
z1, . . . , zK .

We suppose that the age-dependent effect of the latent
characteristics can be compounded into a single random
variable w(a, z), where w(·) is a deterministic function.

For each a, w(a, z) has mean 1. Of key importance in
describing the degree of heterogeneity is the variance of
w(a, z).
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Effective contacts

An effective contact is defined as an event involving
individuals X and Y such that, if Y was infectious and X
susceptible, then Y would infect X .

Let β(a, z; a′, z′) represent the per-capita rate at which an
individual with characteristics (a′, z′) makes effective contacts
with individuals with characteristics (a, z).

The function β(a, z; a′, z′) is non-negative and determines the
so-called effective contact rate surface.
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Effective contact rate surface

The effective contact rate surface may be written as

β(a, z; a′, z′) = α(a, z; a′, z′)β0(a, a′) ,

where

β0(a, a′) =

∫

z′

∫

z
β(a, z; a′, z′)f (z)f (z′) dz dz′

is the average effective contact rate.

We assume that α(a, z; a′, z′) = w(a, z)w ′(a′, z′), hence

β(a, z; a′, z′) = w(a, z)β0(a, a′)w ′(a′, z′) .
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Genesis of time-varying frailty models

Let λ(a, z, t) be the hazard (or force) of infection acting on a
susceptible individual of characteristics (a, z) at time t.

When the infection is in endemic equilibrium, the hazard of
infection is of the form

λ(a, z) =

∫ ∞

0

∫

z′
β(a, z; a′, z′)I (a′, z′) dz′ da′ ,

where I (a′, z′) is the number of infectious individuals with
characteristics (a′, z′).

The functional form which is taken by I (a′, z′) depends on
whether the infection is SIR, SIRS, or some other type.
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Genesis of time-varying frailty models

The integral equation can be written as

λ(a, z) =

∫ ∞

0

∫

z′
w(a, z)β0(a, a′)w ′(a′, z′)I (a′, z′) dz′ da′

= w(a, z)

∫ ∞

0

∫

z′
β0(a, a′)w ′(a′, z′)I (a′, z′) dz′ da′

︸ ︷︷ ︸
=λ0(a)

= w(a, z)× λ0(a) ,

where λ0(a) is the baseline force of infection.

The equation above defines an age-varying frailty model for
the hazard of infection with age-dependent frailty w(a, z).
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Time-varying frailty models

Bivariate setting:

Consider two infections. For infection j the force of infection
at age a for an individual with age-varying frailty zj(a) is
assumed to be of the form

λj(a, zj(a)) = zj(a)λ0j(a) for j = 1, 2 ,

where λ0j(a) are the baseline hazards.

We still need to...
1 find a function w(a, zj1, zj2, . . . , zjK ) = zj(a), where zjk

(j = 1, 2; k = 1, . . . ,K ) are independent age-invariant frailties;

2 make a decision whether to use shared frailties with
z(a) := z1(a) = z2(a) or correlated frailties.
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Piecewise-constant frailties

One could build piecewise-constant frailty models on disjoint
age intervals Ik = (ak−1, ak ] for k = 1, . . . ,K with a0 = 0 and
aK <∞.

Let

zj(a) =
K∑

k=1

zjk Ik(a) ,

where zjk > 0 are identically distributed with unit mean and
variance γjk (j = 1, 2; k = 1, . . . ,K ), and Ik(a) = 1 if a ∈ Ik
(with Ik(a) = 0 otherwise).

Assumption: the frailty in age group k is independent from
the frailty in age group k + 1.
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Multiplicative family

Consider the multiplicative family of models:

zj(a) =
K∏

k=1

[1 + (zjk − 1) hjk(a)] , 0 ≤ hjk(a) ≤ 1 ,

where zjk for j = 1, 2 and k = 1, . . . ,K are independent
random variables with unit mean and variance γjk .

The hjk(a) are deterministic functions such as

hjk(a) = exp
[
− (aφjk)2

]
,

where φjk > 0 is an exponential decay parameter.

Assumption: the frailties across age groups are perfectly
correlated.
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One-component time-varying shared frailty model

Suppose that K = 1 and that the frailty components zj1
(j = 1, 2) follow a gamma distribution, denoted Γ(·, ·).

In the shared frailty model, the correlation between the frailty
terms z11 and z21 is unity we define z1 := z11 = z21.

A one-component age-varying shared gamma frailty model is
then

z(a) = [1 + (z1 − 1)h1(a)] ,

where z1 ∼ Γ(γ−11 , γ−11 ).
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One-component time-varying correlated frailty model

The correlated frailty model allows for a more flexible
correlation structure among the frailty terms.

One can build a one-component age-varying correlated
gamma frailty model as follows:

zj(a) = [1 + (zj1 − 1)hj1(a)] ,

where zj1 = γj1(y01 + yj1), yl1 ∼ Γ(kl1, 1) and
γj1 = (k01 + kj1)−1 (j = 1, 2; l = 0, 1, 2).

The implied correlation between between the frailty terms z11
and z21 is

ρ =
k01√

(k01 + k11)(k01 + k21)
, 0 ≤ ρ ≤ min

{√
γ11
γ21

,

√
γ21
γ11

}
.
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Bivariate serological survey data

T1 and T2: ages at the onset of infection by two distinct
infectious agents.

Association between T1 and T2 can be examined using paired
serological survey data on two infections.

Data are obtained by testing blood serum residues for the
presence of antibodies to one or more infections.

A positive (negative) results indicates prior infection (lack of
prior infection), giving rise to current status data.
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Observable data

For current status data, only the information about whether
the survival time of interest lies before or after the monitoring
time (age) a is available.

Observed information in a bivariate setting is {a, δ1, δ2}, where

δj =

{
1 if Tj ≤ a ,
0 if Tj > a ,

(j = 1, 2) .

Aggregated data at each age a: (n00a, n01a, n10a, n11a) and
na =

∑
i ,j=0,1 nija.
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Estimation

Given parameterizations of w(a, z), λ01(a) and λ02(a), the model is
fitted by maximizing a multinomial likelihood.

The multinomial log-likelihood kernel is
∑

a

∑

i,j=0,1

nija ln {pij(a)} ,

where the probabilities pij(a) (in an SIR setting) are computed as

p00(a) = E

(
exp

{
−
∫ a

0

w(y , z) [λ01(y) + λ02(y)] dy

})
,

p01(a) = E

(
exp

{
−
∫ a

0

w(y , z)λ01(y) dy

})
− p00(a) ,

p10(a) = E

(
exp

{
−
∫ a

0

w(y , z)λ02(y) dy

})
− p00(a) ,

p11(a) = 1− p01(a)− p10(a)− p00(a) .
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Fitting procedure for a pre-specified model

For the current set of parameters,
1 obtain the baseline hazards λ0j (j = 1, 2),
2 compute the probabilities p00(a), p01(a), p10(a) and p11(a),
3 evaluate the log-likelihood,

and iterate until convergence.

Possible parameterizations of the baseline hazards include
continuous parametric baselines (such as the Gompertz
hazard) or piecewise constant baselines.

For some of the models, the expressions pij(a) for i , j = 0, 1
cannot be computed in closed-form.
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Applications

Description of the data

1 Hepatitis A virus (HAV) and hepatitis B virus (HBV) serology

Different transmission routes.
Data obtained from a seroepidemiological study undertaken in
1993 and 1994 in Flanders, Belgium. In total, 4026 blood
samples were drawn.

2 Parvovirus B19 and varizella zoster virus (VZV) serology

Similar transmission routes.
Data for 3379 individuals between 2001 and 2003 in Belgium.
Parvovirus B19: immunizing process (SIR) or recurrent
infection process (SIRS).
Estimation of the basic reproduction number, R0, from
serological data and social contact data.
Social contact hypothesis: β0(a, a′) = q × c(a, a′), where q is
an infection-specific proportionality factor.
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Fitting results for HAV and HBV infection data

Frailty model Frailty parameters Estimates (s.e.) AIC BIC
SGF

√
γ1 0.725 (0.086) 5824.90 5856.41

CGF
√
γ11 1.651 (0.176) 5794.89 5828.99√
γ21 1.608 (2.272)
ρ 0.497 (0.702)

ADSGF-1C
√
γ1 5.843 (0.829) 5756.01 5793.82
φ 0.034 (0.005)

ADCGF-1C
√
γ11 6.606 (1.020) 5757.04 5807.44√
γ21 5.765 (0.831)
φ 0.025 (0.007)
ρ 0.871 (0.080)

ADSGF-2C
√
γ1 5.814 (0.446) 5758.03 5802.13√
γ2 0.009 (0.124)
φ 0.034 (0.005)

ADPiecewiseSGF
√
γ1 3.671 (0.606) 5749.01 5799.42√
γ2 2.421 (0.504)√
γ3 0.012 (0.160)√
γ4 8.813 (7.856)
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Fitting results for Parvovirus B19 and VZV infection data

Frailty model Parameters Estimates [CI] R̂0 [CI] AIC BIC
SGF-SIR q1 0.072 [0.069, 0.075] 3.60 [3.35, 3.88] 4937.14 4955.51

q2 0.200 [0.188, 0.214] 11.64 [10.59, 12.82]
γ 0.152 [0.118, 0.188]

ADSGF-1C-SIR q1 0.072 [0.069, 0.076] 3.60 [3.22, 3.99] 4939.14 4963.64
q2 0.200 [0.183, 0.221] 11.64 [9.99, 13.49]
γ 0.152 [0.100, 0.210]
φ 0.000 [0.000, 0.009]

ADSGF-2C-SIR q1 0.066 [0.062, 0.071] 3.74 [3.15, 4.87] 4912.08 4942.70
q2 0.235 [0.191, 0.299] 15.65 [11.38, 24.08]
γ1 2.918 [1.524, 5.004]
γ2 0.233 [0.156, 0.323]
φ 0.316 [0.246, 0.425]

SGF-SIRS q1 0.071 [0.068, 0.074] 3.18 [2.97, 3.43] 4869.83 4894.33
σ 0.011 [0.008, 0.015]
q2 0.173 [0.163, 0.183] 8.98 [8.22, 9.83]
γ 0.032 [0.002, 0.065]

ADSGF-1C-SIRS q1 0.065 [0.061, 0.070] 2.90 [2.64, 3.49] 4862.93 4893.56
σ 0.012 [0.009, 0.016]
q2 0.158 [0.141, 0.179] 8.19 [7.15, 10.46]
γ 1.470 [0.415, 3.498]
φ 0.330 [0.209, 0.530]

ADSGF-2C-SIRS q1 0.066 [0.062, 0.071] 3.30 [2.79, 4.45] 4859.26 4896.01
σ 0.011 [0.007, 0.015]
q2 0.193 [0.156, 0.257] 11.27 [8.11, 18.90]
γ1 2.419 [0.839, 4.960]
γ2 0.095 [0.017, 0.186]
φ 0.303 [0.226, 0.423]
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Observed and fitted seroprevalence of B19 and VZV
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Figure D.1: The estimated multinomial probabilities p̂δ1,δ2(·) for the TDSGF-2-2C model when
applied to the bivariate serological survey data on parvovirus B19 and VZV in Belgium anno 2001-
2003: (1) p̂00(aj) (left upper panel); (2) p̂10(aj) (right upper panel); (3) p̂01(aj) (left lower panel);
(4) p̂11(aj) (right lower panel).

18

26th Annual Meeting of the RSSB, 19 October 2018 26/30



Setting the scene
Genesis of time-varying frailty models

Estimation and applications to serological data
Discussion

Age-varying shared frailty variance
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Concluding remarks

Time-varying frailty models are a natural choice for capturing
individual heterogeneities relevant to the transmission of
infectious diseases.

Multivariate frailty models with shared/correlated frailties can
be used for

inducing association between infection times within individuals,
heterogeneity among individuals.

Central to our approach is the use of paired serological survey
data on different infections for the same individuals.

For pairs of infection with the same transmission route, a
shared frailty model seems appropriate.

Frailty modelling is fraught with lack of identifiability.

Further work, some of it under way, is required in several areas.
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Research grant

3-year grant entitled “Frailty modelling for multivariate current
status data with applications in epidemiology”

Research project funded by the

Aims:
1 to develop innovative statistical approaches to analyse

multivariate current status data,
2 to develop estimation methods for the new models,
3 to provide statistical software and examples of applications for

the new methodologies.

External collaborator: Niel Hens

I am currently seeking a promising PhD student (or Postdoc)
to work on this project.
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