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Cardiovascular risk prediction

® |t is important to accurately predict the risk of cardiovascular disease
(CVD) so that appropriate preventative treatment decisions can be
made.

® Current clinical practice uses single measurements of CVD risk factors
to predict 10-year risk using CVD risk scores, e.g. Framingham risk
score or QRISK.

® Predictive accuracy could be improved by using measurement history
of CVD risk factors, e.g. blood pressure and cholesterol, to reduce
bias due to measurement error and allow for time trends.

Aim of this work

To evaluate the added value of using historical measurements of CVD risk
factors in CVD risk prediction.




Prediction modelling validation

Split data into training set and test set

Fit model to training set

Obtain risk estimates for test set

® Compare risk estimates with outcomes in test set

Discrimination

C-index = Proportion of pairs of individuals whose order of risk

prediction agrees with their observed order of events




Dynamic risk prediction
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Joint modelling vs landmarking
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Data for subject i

Baseline Z;  Longitudinal baseline covariates
W;  Survival baseline covariates

Longitudinal  Xj; Repeat measurement at visit j
tj  Time of visit j

Survival T;  Event/censoring time
o; Event status

Prediction tored Time of risk prediction
L Prediction window

Survival model

hi(t) = ho(t) exp (o f(Xy) + v W;)



Joint modelling

Rizopoulos

Repeated measurements and survival data are modelled simultaneously
with:
® Mixed effects sub-model

Xij = Po + bo; + P1tjj + byt
+B7Zi + e

boj ) 2
(bl,-)NN(O’Z)’ eij ~ (0,07)
® Survival sub-model

hi(t) = ho(t) exp (o boj + a1 bii + v7 W;)



Landmarking

van Houwelingen and Putter

e Select prediction times {t,eq }
® Select only those still alive at each t,eq

® At each ty.q fit separate survival model to future time-to-event
data

hi(t) = ho(t) exp (a F(X;)+ o7 W,) . > tped
using only past data to obtain f(Xj).

e Can truncate survival follow-up at the end of the prediction
window to avoid long-term assumptions of proportional hazards.
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Landmark models

@ Last observation carried forward
frocr(Xij) = Xijmox(tyeg) »  Ji 0 (t) = max{j : tj < t}

® Cumulative average

foalXy) = — S Xy, m(t)=#{j:ty <t}

i t re ..
g ( P d) ./Simax(tpred)
©® Mixed effects model

boj
Xij = fo + boi + Pty + buty + 81 Zi + €5 <b0-> ~ N(0,%)

1i
h(X) = boi f(Xij) = by

bo; and by; are BLUPS from mixed effects model
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Landmark models: Mixed effects model
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Data sources

ARIC
Cohort study
>13,000

ERFC
IPD meta-analysis
>190,000




Atherosclerosis Risk in Communities (ARIC) study

Barrett et al., Sweeting et al.

>13,000 individuals with no history of CVD at baseline

2,340 CVD events over median follow-up of 22.3 years

Model repeat measurements of systolic blood pressure only.

Baseline risk factors: age, sex, smoking status, history of diabetes,
total cholesterol, HDL-cholesterol



ARIC: SBP measurements
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ARIC results: hazard ratios

SBP SBP slope
Model logHR  SE  logHR SE
LOCF 0.018 0.001 - -
Landmarking LOCF 7 = 0.021 0.001 - -

=3 0.021 0.001 - -
T=6 0.018 0.001 - -
=9 0.016 0.001 - -

Landmarking MM1 7=3 0.031 0.002 - -
T7=6 0.026 0.002 - -

T= 0.025 0.002 - -
Landmarking MM2 7=6 0.028 0.002 0.043 0.046
T= 0.026 0.002 0.079 0.052

Joint model 0.029 0.001 0.118 0.038




ARIC Results: Landmarking vs joint models

C-Index (95% CI)
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® |OCF & Landmarking LOCF
A Landmarking MM1 = Landmarking MM2
Joint model




The Emerging Risk Factors Collaboration (ERFC)

Paige et al

® Individual participant data from >130 prospective studies, curated by
the Cardiovascular Epidemiology Unit

® 38 studies with repeated measurements
® >190,000 individuals with no history of CVD at baseline
® >21,000 CVD events over median follow-up of 12.2 years

® Model repeat measurements of systolic blood pressure, total
cholesterol and HDL cholesterol.

® Baseline risk factors: age, smoking status, history of diabetes, survival
models were stratified by sex.



ERFC: Meta-analysis of differences in C-indices

Cumulative Average compared to BCF Two stage compared to BCF

Study Gnange n Sty Ghango n

avtroviaon i (853 C1) abbroviaton Cindex (853 )
AFTCAPS e 00130 (00056, 0.0316) AFTCAPS —— 00141 (0.0076,0.0358)
ALLHAT —— 00085 (00081, 00210) f— 00098 (0.0067,0.0262)
ARIC o 00039 (00045, 0012) ARG fo— 00085 (0.0064,0.0144)
BHS i 00049 (0.0061, 0.0158) BHS 2 00015 (00076, 00105)
BRUN p—— 00180 (0.0010,00369) BRUN —“— 00122 (0.0078,0.0522)
oaps e 00109 (00078, 0.0295) oes 4 00135 (0.0059,0.0330)
GASTEL — -0.0214 (0.0380,-0.0048) CASTEL — -0.0086 (0.0240, 0.0067)
CHARL — 00021 (00176, 00217) oHARL e 00003 (0.0136,00142)
HS f— 00135 (00098, 0.0508) axs. — 00131 (0.0053,00315)
copen i 00034 (0.0069,0.0021) copen + 00003 (0.0052,0.0048)
CcuoRE -t -0.0039 (-0.0104, 0.0026) CUORE » 00016 (-0.0040, 0.0071)
oesi —— 00064 (00083, 0.0211) oEsi —— 00065 (0.0085,0.0220)
oRECE —_— 00012 (00189, 0.0223) DRECE — -0.0084 (00189, 0.0021)
FNE_IT _— 00270 (:0.0314, 0.0855) FINE_IT —t 00152 (:0.0272, 0.0576)
FINRISK 'S 00037 (0.0008,00077) FINAISK * 00023 (0.0021,0.0087)
con |+ 00065 (00015, 00118) o y 00005 (00025, 0.0057)
KNS —_— 00035 (00275, 0.0344) KNS —_— 00064 (40,0360, 0.0263)
ISRAEL. fre— 0.0098 (-0.0008, 0.0204) ISRAEL. f— 00126 (0.0007, 0.0246)
KiHD — 00029 (0.0214,00155) KiHD — 00015 (00186, 00155)
Lenoen —_— 00078 (00208, 0.0364) LeoER —_—— 00042 (0.0269,0.0%67)
MoVDRFP S 0.0007 (:0.0012, 0.0025) MCVDRFP 1 ~0.0004 (0.0013, 0.0004)
s —— 00039 (00162, 0.0240) MESA —— 00059 (0.0171,0.0289)
MGERAUGS — 00008 (00177,00159) MGERAUGS —— 00014 (0.0124,00153)
wRFIT e 00110 (00065, 0.0268) MAFT — 00161 (0.0049,0.0371)
OSAKA — 0.0024 (-0.0221,00174) 0SAKA —_— 10,0036 (-0.0242, 0.0314)
PREVEND - 00025 (00063, 00114) PREVEND e 00045 (0.0054,00144)
PROCAM fo- 00029 (0.0033,0.0002) PROCAM fe- 00084 (0.0007,00134)
QuesEe - 00044 (00051, 00140) auesec 4 00034 (0.0065,0.0139)
REVK ] 00006 (00021, 0.0094) REvK ] 00003 (0.0019,0.0026)
Aot — 00021 (0.0161,00119) RoTT — 100009 (00139, 00121)
sHIP — -0.0016 (0.0382, 0.0350) SHIP — 00012 (:0.0293, 0.0317)
sHs — -0.0043 (00190, 0.0105) sHS. — -0.0035 (-0.0202, 0.0131)
TaRFS —— 00088 (00160, 0.0356) THRFS —_— 00093 (0.0366, 0.0301)
THOMSO i+ 00148 (00086, 00209) TROMSO i+ 00142 0.0083,0.0202)
uLsAm |—— 0.0271(0.0086, 0.0476) ULSAM | —— 00239 (0.0097, 0.0381)
WHITE2 _ 00081 (0.0440,00522) wHITE2 L 562)
L -0.0260 (40,0580, 0.0081) e —_— -0.0226 (00547, 00085)
3 00039 (00015, 00063) Overal (vsauared =81.1%, p = 0.000) 0 00045 (0.0021,0.0069)

T T T T T T T T
12 o o 0 12 12 o o % 12

Overall: ~ 0.0040 (0.0023, 0.0057) 0.0023 (0.0005, 0.0042)
(12 = 49%) (I1? = 81%)



Clinical Practice Research Datalink (CPRD)

Primary care data

Includes over 20 million patient
lives, with over 5 million currently
registered and active patients

~3.5 million individuals

Representative of the UK « linkage available

population with respect to age, » records between ages 30-85

gender and ethnicity. » records since January 2004

Data linkages with Model

« Hospital Episode Statistics (HES) dfrl\:gt:lsog 00
including admissions, outpatient, A&E == u
and imaging data

« Death Registration data from the Model
Office for National Statistics (ONS) validation

Deprivation data: Townsend n=~166,000
Scores/Index of Multiple Deprivation
(IMD)




CPRD: Multivariate mixed effects model

Separately for males and females and at each landmark age tpreq

SBP;; = 10 + P11Agejj + b1 + €1

TCholij = Boo + P1Ageij + boi + €2ij . Agejj < tpored
HDLj; = B30 + B31Agejj + b3 + €3

Smokij = Bao + Bar1Ageij + bai + €ajj

2
b1 0 of 012 013 014
2
by MVN 0 012 05 023 024
~ s 2

bs; 0 013 023 03 034
2

ba; 0 014 024 034 Of

eiij ~ N(Oagsk)
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Example data: Patient 2

Censored due to leaving the general practice
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Landmarking using CPRD

Step 1: multivariate mixed model

systolic BP
(mmHg)
120140 160180

total
cholesterol
(mmol/l)
5556 5.7 58

(mmol/L)
14 145 15

high density
lipoprotein

smoker

30 40 50 80 70 80 S0
Age (in years)
Step 2: Time-to-event prediction model



Landmarking using CPRD

Step 1: multivariate mixed model
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Landmarking using CPRD

Step 1: multivariate mixed model

systolic BP

(mmHg)
120140160180

total
cholesterol
(mmoliL)
5556 57 58

high density

lipoprotein
(mmol/L)
14 145 15

smoker

80 70 80 20

Age (in years)

Step 2: Time-to-event prediction model



Landmarking using CPRD

Step 1: multivariate mixed model

systolic BP

(mmHg)
120140160180

(mmoliL)

total
cholesterol
5556 57 58

high density

lipoprotein
(mmol/L)
14 145 15

smoker

70 80 20
Age (in years)
Step 2: Time-to-event prediction model



Landmarking using CPRD

Step 1: multivariate mixed model

systolic BP

(mmHg)
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total
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Step 2: Time-to-event prediction model



Landmarking using CPRD

Step 1: multivariate mixed model

systolic BP

(mmHg)
120140160180

total
cholesterol
(mmoliL)
5556 57 58

high density
lipoprotein

(mmol/L)
14 145 15
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Step 2: Time-to-event prediction model



Landmarking using CPRD

Step 1: multivariate mixed model

(mmHg)
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(mmol/L)

14 145 15

smoker

60 éO éD
Age (in years)
Step 2: Time-to-event prediction model



Landmarking using CPRD

Step 1: multivariate mixed model

(mmHg)
120140160180

systolic BP

total
cholesterol
(mmoliL)
5556 57 58

145 15

lipoprotein

(mmol/L)

14
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Step 2: Time-to-event prediction model



Landmarking using CPRD

Step 1: multivariate mixed model

systolic BP
(mmHg)
120140160180

total
cholesterol
(mmoliL)

5556 5758

high density
lipoprotein

(mmol/L)
145 15

14 1:

smoker

80

Age (in years)

Step 2: Time-to-event prediction model



Landmarking using CPRD

Step 1: multivariate mixed model

(mmHg)
120140160180

systolic BP

total
cholesterol
(mmoliL)

5556 5758

high density
lipoprotein

smoker

80

Age (in years)

Step 2: Time-to-event prediction model



CPRD results: Hazard ratios by age

Iotal Cholesterol ., Systolicblood pressure

Smoking Status

Hazard ratio (95% CI) per standard
deviation increase in risk factor
8 1 1.2 5 1 15 2




CPRD results: C-index declines with age

| andmark ane



CPRD results: Overall C-indices

Model C-index (95% Cl)
Subset of individuals with complete data in past 5 years
LOCF 0.733 (0.712, 0.754)
Cumulative average 0.735 (0.715, 0.756)

Mixed model using past data for derivation 0.737 (0.716, 0.758)

All individuals
Mixed model using past data for derivation 0.769 (0.760, 0.778)

Mixed model using past and future data 0.774 (0.765, 0.783)
for derivation




Summary: Joint models vs Landmarking

Joint Models Landmarking

Conditions on survival to tyeq Conditions on survival to tyreq
through shared random effects through sample selection
Incorporates uncertainty Ignores uncertainty in covariates

measured with error
Comprehensive probability model Inconsistent prediction model

Computationally tricky Computationally simple,
scalable to big data problems



Summary and future work

Summary: Developed a CVD risk prediction tool which utilises historical
data from electronic health records.

Overarching objective: To identify and treat high-risk CVD patients
early.

Future work:

® Can joint models be made more computationally tractable?

When should low to medium risk people be rescreened?

What is the impact of model misspecification?

® Screening for multiple disease outcomes

public-health modelling/cost-effectiveness
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