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A General Paradigm for Mixture Models

Suppose we begin confidently with a parametric model,

yi ∼ ϕ(y, θ) i = 1, · · · ,n,

but lose our nerve and admit there may be θ heterogeneity, so,

yi ∼ ϕ(y, θi) i = 1, · · · ,n.

If the θi’s are generated iidly from the distribution F0, this is the de Finetti
mixture model and the yi are exchangeable with density,

yi ∼ g(y) =

∫
ϕ(y, θ)dF0(θ) i = 1, · · · ,n.
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The Average Man is Not Enough

Figure: Source: Quetelet’s (1871) Anthropométrie

One size does not fit all.
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Some Examples

Robbins’s Compound Decisions Binary classification with
Gaussian noise, ϕ is Gaussian,

Biased Thumbtack Flipping Diaconis experiments with thumbtacks
flipped on various surfaces, ϕ is binomial

Gaussian Sequence Model Johnstone and Silverman simulation
experiments meant to mimic genomic applications, ϕ is Gaussian.

Weibull Survival Model Carey et al medfly experiments, ϕ is Weibull.

Binary Response with Random Coefficients Modal choice for
journey to work, ϕ is an indicator function.
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Robbins (1951) Compound Decisions

Suppose we observe, y = (y1, · · · ,yn) from,

Yi = θi + ui, θi ∈ {−1, 1}, ui ∼ N(0, 1)

and we would like to estimate θ ∈ {−1, 1}n under loss,

L(θ̂i, θi) = n
−1

n∑
i=1

|θ̂i − θi|.

Robbins notes that for n = 1 the minimax procedure is,

δ1/2(y) = sgn(y),

and then shows that this rule remains minimax for n > 1.

But isn’t it foolish?
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Let’s be Bayesian

Lacking further information we may be willing to assume that the Yi are
exchangeable, and thus that the θi are iid Bernoulli (p). The minimax
principle presumes that malevolent nature has chosen p = 1/2,
repeatedly.

Robbins observes that if we knew p,

P(θ = 1|y,p) =
pϕ(y− 1)

pϕ(y− 1) + (1 − p)ϕ(y+ 1)

we should guess θ̂i = 1 if this probability exceeds 1/2, or equivalently,

δp(y) = sgn(y− 1
2 log((1 − p)/p))

This is a Bayes rule shrinkage adjustment. But we don’t know p.

Roger Koenker (cemmap/UCL) NPMLE Methods for Mixture Models Hautes Fagnes: 18.10.2018 6 / 33



Let’s be Bayesian

Lacking further information we may be willing to assume that the Yi are
exchangeable, and thus that the θi are iid Bernoulli (p). The minimax
principle presumes that malevolent nature has chosen p = 1/2,
repeatedly.
Robbins observes that if we knew p,

P(θ = 1|y,p) =
pϕ(y− 1)

pϕ(y− 1) + (1 − p)ϕ(y+ 1)

we should guess θ̂i = 1 if this probability exceeds 1/2, or equivalently,

δp(y) = sgn(y− 1
2 log((1 − p)/p))

This is a Bayes rule shrinkage adjustment. But we don’t know p.

Roger Koenker (cemmap/UCL) NPMLE Methods for Mixture Models Hautes Fagnes: 18.10.2018 6 / 33



Let’s be Bayesian

Lacking further information we may be willing to assume that the Yi are
exchangeable, and thus that the θi are iid Bernoulli (p). The minimax
principle presumes that malevolent nature has chosen p = 1/2,
repeatedly.
Robbins observes that if we knew p,

P(θ = 1|y,p) =
pϕ(y− 1)

pϕ(y− 1) + (1 − p)ϕ(y+ 1)

we should guess θ̂i = 1 if this probability exceeds 1/2, or equivalently,

δp(y) = sgn(y− 1
2 log((1 − p)/p))

This is a Bayes rule shrinkage adjustment. But we don’t know p.

Roger Koenker (cemmap/UCL) NPMLE Methods for Mixture Models Hautes Fagnes: 18.10.2018 6 / 33



Hierarchical Bayes
We have the log likelihood,

`n(p|y) =

n∑
i=1

log(pϕ(yi − 1) + (1 − p)ϕ(yi + 1))

a symmetric beta prior is convenient,

logπ(p) = a log(p) + a log(1 − p) − logB(a,a).

The posterior for θi is,

p(θi = 1 | y1, . . . ,yn) =
ϕ(yi − 1)p̄i

ϕ(yi − 1)p̄i +ϕ(yi + 1)(1 − p̄i)
,

where p̄ is the posterior mean of p given the data y.

p̄i =

∫
p
∏
j6=i(pϕ(yj − 1) + (1 − p)ϕ(yj + 1))π(p)dp∫∏
j6=i(pϕ(yj − 1) + (1 − p)ϕ(yj + 1))π(p)dp

.

and we have a plug-in (mea culpa!) Bayes rule,

δp̄i(yi) = sgn(yi − 1
2 log((1 − p̄i)/p̄i)).
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Empirical Risk for Several Decision Rules
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Figure: Mean absolute loss over 1000 replications.
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A Grouped Robbins Problem

Suppose we now have a panel structure, n groups each with J members

Yij = θij + uij, i = 1, · · · ,n, j = 1, · · · , J,

with θij ∈ {−1, 1} and uij ∼ N(0, 1). Each group is allowed its own pi, but
– preserving exchangeability – drawn from a distribution F, so marginally,

Yi ∼ g(y|p) =

∫1

0

J∏
j=1

(pϕ(yj − 1) + (1 − p)ϕ(yj + 1))dF(p).

Robbins (1951), anticipating Kiefer and Wolfowitz (1956), proposed that
F could be estimated (nonparametrically) by maximum likelihood.
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Kiefer and Wolfowitz NPMLE’s for Mixture Models

Generic Problem

Yi|θ ∼ ϕ(y|θ), θ ∼ F, Yi ∼ g(y) =

∫
ϕ(y|θ)dF(θ)

max
F∈F

{ n∑
i=1

log g(yi) | g(y) =

∫
ϕ(y|θ)dF(θ)

}
Generic Solution

I Objective is strictly convex and constraints are polyhedral, so solutions
are unique.

I Constraints may be implemented on a fine grid, but solutions are
discrete with only a few mass points.

I Rather than impose a prior for F, we estimate it!
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The Grouped Robbins Problem

In the grouped Robbins problem with a mixture over the pi’s we solve,

max{
n∑
i=1

log(gi) | Ap = g,p ∈ S}

where gi = g(yi1, · · · ,giJ), A denotes the n by m matrix with typical
element

Aik =

J∏
j=1

(pkϕ(yij − 1) + (1 − pk)ϕ(yij + 1))

and p is an m-vector, constituting a grid on [0, 1], and living on the m
dimensional simplex, S.
The Diaconis thumbtack problem is very similar except ϕ is binomial
rather than Gaussian.
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Free the θ’s: The Gaussian Sequence Model

Restricting the θij’s to live in {−1, 1} seems a bit cruel, why not let them
roam free? Suppose that,

Yi = θi + ui, θi ∼ F, ui ∼ N(0, 1)

so marginally Yi ∼ g(y) =
∫
ϕ(y− θ)dF(θ). Under quadratic loss Robbins

(1956) shows that the optimal Bayes rule estimator of the θ’s is given by,

δ(y) = y+ g ′(y)/g(y).

Efron (2011) calls this Tweedie’s formula; it provides a general shrinkage
strategy for Gaussian noise models, encompassing various parametric
Stein rule procedures. When F is known we’re good to go, otherwise we
need again to estimate our prior, F.
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Needless [sic] and Haystacks
It is commonly assumed that F contains a large mass point concentrated
at zero, the haystack, and a smaller mass well separated from zero, i.e.
the needles. Castillo and van der Vaart (2012) compare several Bayes and
empirical Bayes procedures in this setting.

s = 25 s = 50 s = 100
3 4 5 3 4 5 3 4 5

PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319
PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 294 300
HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245
GMLE 80 57 30 122 81 40 174 112 53

Table: Mean squared error of several estimators considered by Castillo and van
der Vaart and the GMLE procedure of Robbins. Sample size n = 500 throughout,
with s non-null observations concentrated at θ ∈ {3, 4, 5}. Based on 100
replications for the first eight Castillo and van der Vaart procedures, and 1000
replications for the GMLE.
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Bayesian Deconvolution

Tweedie’s formula reveals that we don’t really need to estimate the mixing
distribution F to construct an estimate of the Bayes rule for the Gaussian
sequence compound decision problem, all we need is a good estimate of
the mixture density g. We have three options (at least):

Classical deconvolution a la Stefanski and Carroll (1990),

Efron’s log-spline approach: let log f(y,β) =
∑p
j=1 βjψj(t) −ψ0(β)

so estimating dF is reduced to finding the MLE for β,

Kiefer-Wolfowitz NPMLE by solving the convex program:

max
f

{

n∑
i=1

log g(yi)|g = Af, f > 0, 1>mf = 1}
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A Comparison for an Efron Simulation Setting
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Figure: Comparison of Mixing Distribution Estimators: Left panel is smooth target
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reported in the panel headings.
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A Weibull Mixture Problem

Carey et al (1992) studied survival times for 1.2 million medflies and
reached several surprising conclusions:

Mortality (hazard) rates declined after age 60 days,

Extremely long right tail with some flies living until age 200 days,

Gender cross-over in mortality rates with males more frail after age
25.

Weibull scale mixture model:

max
F∈F

{

n∑
i=1

g(yi) | g(y) =

∫
ϕ(y, θ)dF(θ)

Weibull shape parameter poses an interesting profile likelihood problem.
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Gender Specific Baseline Weibull Model Estimation

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●

●
●●●

●●●
●●●

●

●

●

●●

●
●●●

●●●

●
●
●
●
●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●
●
●

0 20 40 60 80 100 120

−
6

−
5

−
4

−
3

−
2

day

lo
g(

ha
za

rd
)

α = 2.793

k =  28 ( 78 %)

Initial Weibull Fit:  Males

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●●

●●●

●
●
●

●
●
●
●
●●

●●

●

●
●●●●

●

●
●

●
●
●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●●●●

●

●
●

●

0 20 40 60 80 100 120

−
6

−
5

−
4

−
3

−
2

day

lo
g(

ha
za

rd
)

α = 2.909

k =  18 ( 53 %)

Initial Weibull Fit:  Females

Roger Koenker (cemmap/UCL) NPMLE Methods for Mixture Models Hautes Fagnes: 18.10.2018 17 / 33



NPMLE Gender Specific Estimated Hazard Rates
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Figure: Gender Specific Hazard Functions for the Weibull Mixture Model: Raw
daily mortality rates are plotted in red for males and blue for females,
superimposed are the estimated hazard functions for the Weibull mixture models.
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Random Coefficient Binary Response
We observe (yi, xi,wi) : i = 1, · · ·n where yi ∈ {0, 1}, xi ∈ Rd+1,
wi ∈ Rp and suppose,

yi = 1(x>i βi +wiθ0 > 0).

The random coefficients βi are drawn independently of xi and wi and iidly
from a distribution F0. We will assume that xi = (1, z>i ,−vi)

> and will
need to normalize βi since it is only identified up to scale. It is convenient
to normalize by setting one coefficient equal to one. Our objective is to
estimate the pair (θ0, F0).

The simplest setting is univariate with no zi or
wi and βi = (ηi, 1)>, so,

P(y = 1|v) =

∫
1(η > v)dFη(η).

In econometrics this is called the Cosslett (1983) model. In biostatistics it
is called the current status model, and has been studied extensively
notably by Groeneboom and Jongbloed. The vi’s are inspection times and
we observe only the binary indicator of the onset of a disease.
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Only Locally Maximal Intervals “Count”
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Theorem Only intervals with locally maximal intersections contain points
that may have positive mass in the NPMLE solution. Within the optimizing
intervals how mass is allocated is arbitrary.
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Nonparametric Maximum Likelihood for Bivariate Fη

When the random parameter η is bivariate we have half spaces instead of
half lines and polygons instead of intervals so arrangements become more
complicated. Our binary response is generated as,

P(yi = 1|zi, vi) = P(η1i + ziη2i + vi > 0).

Each pair, (zi, vi), defines a plane that divides R2 into two halfspaces, an
“upper” one corresponding to realizations of yi = 1, and a “lower” one for
yi = 0. Let Ri denote these halfspaces and Fη{Ri} be the probability
assigned to each Ri by the distribution Fη, so the log likelihood is,

`(Fη) =

n∑
i=1

log Fη{Ri}.

Theorem The NPMLE assigns positive mass only to polygons with locally
maximal counts of the number of their intersecting halfspaces.
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“Facing Up to Arrangements”

Over the last 50 years there has been considerable progress in algebraic
and computational geometry on what is called “hyperplane arrangements”.
Given n hyperplanes Hi : i = 1, · · · ,n in Rd, a first question might be:
How many polytopes do they form? The question isn’t quite well posed,
however unless the hyperplanes are in “general position” so any subset of
size k 6 d has normals that are linearly independent, then the question
has the following elegant answer:

M(n,d) =
d∑
k=0

(
n

k

)
This was apparently first proven by Buck (1943) and elaborated by
Zaslavsky (1975).
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In R2 How Many Interesting Polygons Are There?

When the hyperplanes are lines in R2 in general position, there are(
n
2

)
+ n+ 1 = O(n2) polygons. But only locally maximal polygons are

interesting; how do we find those? The naive answer is that we count the
number of half-space intersections for each polygon and ignore any that
have neighbours with larger counts. This works great up to about n = 10.

Suppose all the lines are oriented in the same way so above is 1 and
below is 0,

Then we can just count intersections of the halfspaces for each
polygon,

For our binary responses, we just flip the sign of the coefficients for
the yi = 0 lines,

Given the counts for each polygon, we delete polygons that are not
locally maximal,

Polygons are then represented by any interior point.
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Manski’s Maximum Score Estimator: A Digression

The maximum score estimator is looking for the globally maximal polygon:

So maximum score is a bounds estimator avant la lettre,

Each locally maximal polygon constitutes a region in which the search
for a global maximum may become marooned,

The piecewise constant function of counts on the polygons can be
viewed as a likelihood surface, and therefore serves as a “sort-of,
kind-of” posterior for the parameter Fη,

The NPMLE for F0 assigns positive mass to some of these locally
maximal polygons, but not all, so in Bayesian terminology it is a
(somewhat curious) MAP estimator.
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Incremental Cell Enumeration

Rada and Černý (2018), refining prior proposals of Avis and Fukuda
(1996), have proposed an algorithm for cell (polytope) enumeration with
running time proportional to the number of cells. Given a hyperplane
arrangement, H = {H1, · · · ,Hn} it proceeds by adding one hyperplane at
a time, finding the newly created cells and their associated interior points.

Given any cell we can associate a sign vector, sk ∈ Rn that reveals
whether each of the n hyperplanes lie above or below interior points
of the cell. Let S be an n by M matrix with columns composed of
these vectors.

The algorithm proceeds by sequentially updating these sign vectors
as hyperplanes are added.

To verify the validity of the new sign vectors and find an interior point
for each new cell we need to solve a linear program.
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Keeping up with the Joneses

Given the matrix of sign vectors, S, for the full sample as produced by the
AIE algorithm, it is easy to determine neighbours for each cell.

Cells Cj and Ck are neighbours if and only if their sign vectors differ
in exactly one coordinate.

Define cell counts, for each cell by replacing all -1’s in their sign vector
by 0’s, and summing.

Eliminate from consideration any cells with neighbours that exceed
their own cell counts

This typically reduces the number of candidate cells from O(n2) to
O(n) in bivariate problems.

The interior points of the remaining cells constitute potential support
points of the NPMLE.
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The NPMLE: 3 Equivalent Versions
Fix θ and let G(z, v, θ) = {η|z>η+ v+w>θ > 0}. The NPMLE solves,

max
F∈F

n∑
i=1

yi log[PF(G(zi, vi, θ))] + (1 − yi) log[1 − PF(G(zi, vi, θ))].

Given locally maximal cells, {Ci, · · · ,CM∗}, define a n by M∗ matrix A
with Aij = 1{Cj ⊂ G(zi, vi, θ)} if yi and 1 − 1{Cj ⊂ G(zi, vi, θ)} if yi = 0,

min
{
−

1

n

n∑
i=1

log gi | gi =
∑
j

aijpj,
∑
j

pj = 1,pj > 0
}

The dual problem is preferable since M∗ is typically much larger than n,

max
{ n∑
i=1

logπi |
n∑
i=1

aijπi 6 n for all j
}

The NPMLE assigns mass pi = πi to cell Ci for i = 1, · · · ,M∗. This
convex optimization problem can be solved efficiently with Mosek, for
example. Profile likelihood can then be optimized to obtain θ̂n.
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Identification and Asymptotics
Returning to our original model with profiled parameters θ0 as well as F0 to
be estimated,

yi = 1(x>i βi +wiθ0 > 0).

Theorem
Under the following assumptions:

A1 The random vectors (xi,wi) and βi are independent and [X
...W] has full

column rank.

A2 The parameter space Θ is a compact subset of a Euclidean space and
θ0 ∈ Θ. The space F of probability distributions for βi is supported on the
d-dimensional unit sphere, and there exists a vector c 6= 0 such that
PF(c>βi > 0) = 1 for all F ∈ F.

A3 The distribution of (z>i , vi) is absolutely continuous on Rd and w>i θ0 is
absolutely continuous both possessing an everywhere positive density.

the parameter (θ0, F0) is identified, and the NPMLE is strongly consistent.

The proof is very Wald (1948) like, as in Kiefer and Wolfowitz (1956) and recently
elaborated in a review paper by Chen (2017).
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Some Simulation Comparisons

Gautier and Kitamura (2013) have proposed an elegant Fourier-Laplace
deconvolution approach to estimation of Fη for the bivariate problem. We
will compare performance of our NPMLE approach to theirs.

We adopt the same simulation setup used by Gautier and Kitamura: Data
is generated with (zi, vi)’s drawn iidly from the standard bivariate
Gaussian distribution, ηi drawn either from:

With equal probability from the two points, {(0.7,−0.7), (−0.7, 0.7)}, or

From bimodal correlated Gaussians with separated modes at these
points,
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Gautier-Kitamura Contours for their Bimodal DGP
Default Tuning Parameters, n = 500
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NPMLE for the Gautier-Kitamura Bimodal DGP
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One Picture is Worth 1000 Simulations
It is dangerous to infer too much from a single realization so we ran a small
scale (500 replications) simulation experiment to evaluate out-of-sample
predictive performance of the methods. Sample size n = 500

GK NPMLE NPMLEs Logit
MAE 0.1333 0.0868 0.1274 0.1753
RMSE 0.1705 0.1576 0.1726 0.2150

Table: Bivariate Point Mass Simulation Setting: Mean Absolute and Root Mean
Squared Errors of Predicted Probabilities

GK NPMLE NPMLEs Logit
MAE 0.1288 0.0592 0.0475 0.0709
RMSE 0.1440 0.0748 0.0594 0.0896

Table: Bivariate Gaussian Simulation Setting: Mean Absolute and Root Mean
Squared Errors of Predicted Probabilities
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