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Introduction

We observe Xit , i = 1, . . . ,N, t = 1, . . . ,T .

Generalized Dynamic factor models :

Xit = χit + ξit

= bi1(L)u1t + . . .+ biq(L)uqt + ξit ,

ut = (u1t , . . . , uqt) is an unobservable orthonormal white
noise, orthogonal to ξit .

Cross covariances among ξit are weak.

All components (potentially N > T ) are driven by a small
number of factors q.



FHLZ

Classical methods assume that the span of the common
components is finite dimensional.

Xit = λi1F1t + . . .+ λirFrt + ξit ,

Estimation and prediction method without this assumption :
Forni, Hallin, Lippi and Zafaroni (2016) , Dynamic Factor Models
with Infinite-Dimensional Factor Space: estimation.
Empirical success :
Forni, Giovannelli, Lippi and Soccorsi (2016), Dynamic Factor
model with infinite dimensional factor space : forecasting.



VAR representation

Under the assumption of rational spectral density :

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + . . .+

ciq(L)

diq(L)
uqt ,

it is shown in FHLZ that for almost all sets of parameters, any
subvector
χ

(i )
t = (χi1t , χi2t , . . . , χiq+1t)

′, 1 ≤ i1 < i2 < . . . < iq+1 ≤ N has
the following VAR representation :

χ
(i )
t = A

(i )
1 χ

(i )
t−1 + . . .+A

(i )
S χ

(i )
t−S +R(i )ut , t = S + 1, . . . ,T , (1)

A
(i )
j , j = 1, . . . ,S are (q + 1)× (q + 1) real matrices,

R(i ) is an (q + 1)× q matrix

S finite

Covariance matrix of the noise Ω(i ) is of rank q.



Summary

FHLZ uses the Yule-Walker equations to estimate the
parameters of the VAR processes.

Singular noise structure implies that

ΓS : = Cov

(
(χ

(i )
t , χ

(i )
t−1, . . . , χ

(i )
t−S+1)′

)
might be close to singularity,

which implies a bad accuracy of prediction.

We therefore suggest a regularization method

and show on simulation that we outperform.



Forecasting methodology : 1. Covariance estimation

1. Estimate the spectral density matrices of (Xt)

F̂X (θ) :=
∑

−B≤h≤B

(
1− |h|

B

)
γ̂X (h)e−ihθ.

2. Derive estimators F̂χ(θ) based on a spectral expansion of
F̂X (θ)

3. Estimate the auto-covariance operators of the common
components through

Γ̂χ(k) =
1

Nθ

Nθ∑
i=1

F̂χ(θi )e
ikθi , k = −S , . . . ,S .



Forecasting methodology : 2. sub VAR estimation

4. Divide the cross-section into N/(q + 1) subsets of indexes of
cardinal q + 1.

5. Obtain the autocovariances Γ̂(i )(k) of the subvectors χ
(i )
t .

6. Estimate, by the Yule-Walker equations based on Γ̂(i )(k), the
VAR model (1) for all the subvectors.

One obtains the estimators Â
(i )
j , j = 1, . . . ,S , .

7. Compute the residuals ε̂
(i )
t . described by

X
(i )
t = Â

(i )
1 X

(i )
t−1 + . . .+ Â

(i )
S X

(i )
t−S + ε̂

(i )
t , t = S + 1, . . . ,T ,



Forecasting methodology 3 : combining

8. Combine the elements of the previous step in order to find the
matrices Â = (Â1, . . . , ÂS) and the residuals ε̂t of the entire
cross-section

9. Estimate the matrix R and the factors ut through a principal
component analysis on the residuals ε̂t .

10. Compute Ĉ (L) = Ĉ0 + Ĉ1L + . . . : = Â(L)−1 and deduce the
h-step ahead prediction
X̂T+h = χ̂T+h = ĈhR̂ûT + Ĉh+1R̂ûT−1 + . . ..

11. Repeat the last algorithm (from step 4) several times
permuting the indexes and average the predictions.



Notation

Assume χt is a (q + 1)-dimensional VAR process with matrix
coefficients A = (A1, . . . ,AS) and with noise εt .

Let Ct = (χ′t , . . . , χ
′
t−S+1)′.

m = (q + 1)S .

ΓS = Cov(Ct), Ω = Cov(εt), γ = Cov(χt).

Spectral Decomposition : Γ̂S =
∑m

k=1 λ̂k êk ê
′
k .

Ā =


A1 A2 · · · AS−1 AS

I O · · · O O
...

...
. . .

...
O O · · · I O

 ,



Ill-conditioning

Throughout, we assume that Ω is of rank q.

Proposition

Let ‖M‖ be the spectral radius of ‖M‖ :=
√
λmax(MM ′). Then,

λmax(ΓS)

λmin(ΓS)
≥ ‖Ω‖

‖AS‖2‖γ‖
(

1 +
∑S−1

j=1 ‖Aj‖2
) .

Hence, overestimation of S implies a infinitely large condition
number. Moreover, if Aj = aj Iq+1, for aj ∈ R, one can show that
λmin(ΓS) = 0.



Prediction Inaccuracy 1

Assume that we observe C̃t = Ct + Ξt where Ξ is the error term.
We look at the prediction error, PE , between the actual forecast
and the optimal forecast :

PE : = Πq+1
ˆ̄AC̃s − Πq+1ĀCs .

It can be decomposed into

PE = Πq+1ΨΓ̂−1Cs +Πq+1ĀΞs +Πq+1(ˆ̄A− Ā)Ξs

= H1s +H2s +H3s ,

where Πq+1 is the projection onto the first q + 1 components and
Ψ is a m ×m matrix that depends on χt and εt .



Prediction Inaccuracy 2

Proposition

Assume that ξ = Nm(0, σ2
ξ Im). It holds that

1

T

T−1∑
s=1

E‖H1s‖2 =
1

T

m∑
`=1

E‖N`,T‖2;

1

T

T−1∑
s=1

E‖H2s‖2 = σ2
ξ

S∑
k=1

tr
(
AkA

′
k

)
;

1

T

T−1∑
s=1

E‖H3s‖2 =
σ2
ξ

T

m∑
`=1

E

(
‖N`,T‖2

λ̂`

)
,

where (N ′1,T , . . . ,N
′
m,T )′

D−→ Nm(0, IS ⊗ Ω)

If λ̂k is too small, MPSE explodes.



Solution proposed

Estimate A by
ˆ̄ATRIM = ˆ̄APK

where PK is the projection onto the K first eigenvectors of Γ̂S .

It limits the previous exploding sum to its first K term(s).

The value of K is chosen to minimize a proxy of the MSPE.



Simulation

We simulate from the data generating process (DGP) described by

Xit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + . . .+

ciq(L)

diq(L)
uqt + ξit ,

cij(L) = aij and dij(L) = 1 + αijL where aij
i.i.d∼ U [−1, 1] and

αij
i.i.d∼ U [−0.8, 0.8].

ujt
i.i.d∼ N (0, 1), j = 1, . . . , q, t = 1, . . . ,T .

ξit
i.i.d.∼ N (0, 1).

Our quality measure :
‖X̂ (TRIM)

T+1 −X (opt)
T+1 ‖

‖X̂ (FHLZ)
T+1 −X (opt)

T+1 ‖
at every repetition

where X
(opt)
T+1 = E [XT |A(L), χi ,T , χi ,T−1, . . .]



Results

q = 1
N,T 60 120 240 480

30 0.37 (0.2) 0.43 (0.23) 0.56 (0.38) 0.54 (0.41)
60 0.42 (0.18) 0.55 (0.22) 0.65 (0.28) 0.63 (0.47)

120 0.47 (0.18) 0.57 (0.22) 0.66 (0.21) 0.61 (0.23)
240 0.5 (0.18) 0.55 (0.19) 0.63 (0.19) 0.61 (0.24)

q = 2
N,T 60 120 240 480

30 0.96 (0.14) 0.97 (0.12) 0.93 (0.17) 0.84 (0.27)
60 0.97 (0.05) 0.96 (0.07) 0.94 (0.1) 0.86 (0.17)

120 0.96 (0.04) 0.96 (0.05) 0.93 (0.08) 0.86 (0.12)
240 0.96 (0.04) 0.96 (0.04) 0.93 (0.06) 0.86 (0.09)

Table 1: Average (standard deviation) of quality measure across
repetitions.



Conclusion

Also in the paper:

An adaptation of the information criterion to choose the VAR
order,

a simulation setting for singular VAR in general,

a macro-economic application.


