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Introduction

o We observe X, i=1,..., N, t=1,...,T.

@ Generalized Dynamic factor models :

Xit = Xit + &it
= bin(L)urr + ... + big(L)uge + &it,

@ uy = (u1¢, ..., Uqt) is an unobservable orthonormal white
noise, orthogonal to &;;.

@ Cross covariances among &;; are weak.

o All components (potentially N > T) are driven by a small
number of factors q.



FHLZ

Classical methods assume that the span of the common
components is finite dimensional.

Xit = AitFre + ..+ Xir Fre + i,

Estimation and prediction method without this assumption :
Forni, Hallin, Lippi and Zafaroni (2016) , Dynamic Factor Models
with Infinite-Dimensional Factor Space: estimation.

Empirical success :

Forni, Giovannelli, Lippi and Soccorsi (2016), Dynamic Factor
model with infinite dimensional factor space : forecasting.



VAR representation

Under the assumption of rational spectral density :

cii(L cio(L cig(L
= 1( )U1t+ dzEL; Upy + ...+ quL; Ugqt,
i iq

Xit din(L)
it is shown in FHLZ that for almost all sets of parameters, any
subvector
Xg’) = (Xirt> Xipts - - - 7xiq+1t)/? 1<in<k<... <igy <N has
the following VAR representation :

Xgi) = A(li)Xgi)1 +.. .+A(5i)X£i25+ ROup, t=S+1,...,T, (1)

AJ(.i),j =1,...,5are (g +1) x (g +1) real matrices,
R is an (q + 1) x g matrix
S finite

Covariance matrix of the noise Q() is of rank gq.



Summary

@ FHLZ uses the Yule-Walker equations to estimate the
parameters of the VAR processes.

Singular noise structure implies that
rs: = cov((xgw,xg»l, - ,Xg'_>5+1)f)

might be close to singularity,

which implies a bad accuracy of prediction.

We therefore suggest a regularization method

and show on simulation that we outperform.



Forecasting methodology : 1. Covariance estimation

1. Estimate the spectral density matrices of (X;)

Fx(0):= > < —‘Z') Ax(h)e 0.

—B<h<B

2. Derive estimators .7:"X(9) based on a spectral expansion of
Fx(6)

3. Estimate the auto-covariance operators of the common
components through



Forecasting methodology : 2. sub VAR estimation

4. Divide the cross-section into N/(q + 1) subsets of indexes of
cardinal g + 1.

5. Obtain the autocovariances ["()(k) of the subvectors Xﬁ’).

6. Estimate, by the Yule-Walker equations based on ['()(k), the
VAR model (1) for all the subvectors.

One obtains the estimators Aj(.i), j=1...,5,.

7. Compute the residuals égi). described by

xD = A ¢ ADXO D sy T



Forecasting methodology 3 : combining

10.

11.

Combine the elements of the previous step in order to find the
matrices A = (A, ..., As) and the residuals € of the entire
cross-section

Estimate the matrix R and the factors u; through a principal
component analysis on the residuals ;.

~

Compute C(L) = Co+ GiL+...: = A(L)"! and deduce the
h-step ahead predlctlon

X74h = X74n = CoROT + CpraRaT_1 +.

Repeat the last algorithm (from step 4) several times
permuting the indexes and average the predictions.



Notation

Assume ¢ is a (g + 1)-dimensional VAR process with matrix
coefficients A = (Aj,...,As) and with noise ¢;.

Let Gt = (Xt > Xi_s541)
m=(q+1)S.

s = Cov(Ct), Q = Cov(et), v = Cov(xt).
Spectral Decomposition : s = 327, A é,é).

/

A Ay -+ As_1 As



lll-conditioning

Throughout, we assume that Q is of rank gq.

Proposition

Let ||M|| be the spectral radius of ||M]| := \/Amax(MM’). Then,
Amax(FS) > HQ”
)\min(rS) o

- |
JAsIZIl (1 + 5255 1A )

Hence, overestimation of S implies a infinitely large condition
number. Moreover, if A; = ajly1, for a; € R, one can show that
Amin(Fs) = 0.



Prediction Inaccuracy 1

Assume that we observe Ct = C; + =¢ where = is the error term.
We look at the prediction error, PE, between the actual forecast
and the optimal forecast :

PE: =MNg1AC; — Mg 1AG,.
It can be decomposed into

PE = Mg Wi 1C  +Mg1ASs  +Mge(A— A=,
= Hls +H25 +H357

where [g 1 is the projection onto the first g + 1 components and
WV is a m X m matrix that depends on x; and ;.



Prediction Inaccuracy 2

Proposition
Assume that & = Nn(0, a5 m). It holds that

1 T-1 1 m
=Y E|Hi|? = *ZEHNe Tl%
/=1

T
s=1

;T2 s

- E|lHas|® = 02~ tr(AcAL):;
s=1 k=1
T-1 2 m 2

1 2 ¢ | Ve, 7l

7 2 EllHss|® = = Y E < ;
s=1 (=1

where (N 7,.... N, 7Y 2> Nw(0, Is © Q)
If Ax is too small, MPSE explodes.



Solution proposed

@ Estimate A by
ATRIM _ /?\PK
where Pk is the projection onto the K first eigenvectors of Ms.
@ It limits the previous exploding sum to its first K term(s).

@ The value of K is chosen to minimize a proxy of the MSPE.



Simulation

We simulate from the data generating process (DGP) described by

cin(L) cia(L) cig(L)
Xy = ‘s
t d,]_(L) 1t + d,2(L) u2f + + d,q(L) uqt + 5 t
o ¢j(L) = ajj and dji(L) = 1+ ;L where aj; Hig U[-1,1] and
i "NdU[ 0.8,0.8].

° uj i N(,1),j=1,...,q, t=1,..., T.
o & " N(0,1).

H (TRIM) X(opt H
@ Our quality measure : T;,L}Lz—m at every repetition

X741 X

where X-(,-Oﬁ) = E[X7|A(L), Xi, 7+ Xi, T-15 - - -]



Results

g=1
N, T | 60 120 240 480
30 | 0.37 (0.2) 0.43 (0.23 0.56 (0.38)  0.54 (0.41)

(0.23) (

60 | 0.42(0.18) 055(0.22)  0.65(0.28)  0.63 (0.47)
120 | 0.47(0.18) 057 (0.22)  0.66 (0.21)  0.61 (0.23)
240 | 0.5 (0.18) 0.55 (0.19)  0.63 (0.19)  0.61 (0.24)

q=2
N, T 60 120 240 430

30 | 0.96 (0.14) 0.97 (0.12)  0.93 (0.17) _ 0.84 (0.27)

60 | 0.97 (0.05)  0.96 (0.07)  0.94 (0.1) 0.86 (0.17)
120 0.96 (0.04) 0.96 (0.05) 0.93 (0.08) 0.86 (0.12)
240 0.96 (0.04) 0.96 (0.04) 0.93 (0.06) 0.86 (0.09)

Table 1: Average (standard deviation) of quality measure across
repetitions.



Conclusion

Also in the paper:
@ An adaptation of the information criterion to choose the VAR

order,
@ a simulation setting for singular VAR in general,

@ a macro-economic application.



